School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia.
School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia.
J Mech Behav Biomed Mater. 2024 Sep;157:106642. doi: 10.1016/j.jmbbm.2024.106642. Epub 2024 Jun 25.
Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.
藻酸盐和结冷胶都被研究人员用作增强网络,以创建坚韧且生物相容的聚乙二醇(PEG)基双网络(DN)水凝胶;然而,每种方法的相对优势和劣势尚不清楚。本研究直接比较了使用浓度为 10 至 20wt%的 PEG 二甲基丙烯酸酯(PEGDMA)和浓度为 1 和 2wt%的增强网络,用结冷胶或海藻酸钠增强的 PEGDMA 杂化 DN 水凝胶的机械和生物学性质。研究结果表明,结冷胶增强更有效地提高了 PEGDMA DN 水凝胶的强度、刚性和韧性。相比之下,与结冷胶增强的 PEGDMA 相比,藻酸盐增强会产生具有更大拉伸性的 DN 水凝胶。此外,通过无缺口断裂功测试和缺口断裂韧性测试对韧性进行单独测量表明,对于单一增强网络类型,这两种特性之间存在很强的相关性,但对于两种增强网络类型则不存在相关性。这表明,在比较不同坚韧 DN 水凝胶系统时,进行额外的缺口断裂韧性实验对于理解完整的机械响应非常重要。关于生物响应,在将基质蛋白缀合到两种材料的表面后,观察到在更硬的结冷胶-PEGDMA 材料上附着的细胞中,高 yes 相关蛋白(YAP)核表达支持了强大的细胞附着和扩展。这项研究提供了有价值的见解,即如何根据特定的性能要求设计双网络水凝胶,例如用于生物医学设备、组织工程支架或软机器人应用。