Suppr超能文献

使用增强学习-残差物理方法提高正电子发射断层扫描探测器的时间分辨率

Improving the Timing Resolution of Positron Emission Tomography Detectors Using Boosted Learning-A Residual Physics Approach.

作者信息

Naunheim Stephan, Kuhl Yannick, Schug David, Schulz Volkmar, Mueller Florian

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):582-594. doi: 10.1109/TNNLS.2023.3323131. Epub 2025 Jan 7.

Abstract

Artificial intelligence (AI) is entering medical imaging, mainly enhancing image reconstruction. Nevertheless, improvements throughout the entire processing, from signal detection to computation, potentially offer significant benefits. This work presents a novel and versatile approach to detector optimization using machine learning (ML) and residual physics. We apply the concept to positron emission tomography (PET), intending to improve the coincidence time resolution (CTR). PET visualizes metabolic processes in the body by detecting photons with scintillation detectors. Improved CTR performance offers the advantage of reducing radioactive dose exposure for patients. Modern PET detectors with sophisticated concepts and read-out topologies represent complex physical and electronic systems requiring dedicated calibration techniques. Traditional methods primarily depend on analytical formulations successfully describing the main detector characteristics. However, when accounting for higher-order effects, additional complexities arise matching theoretical models to experimental reality. Our work addresses this challenge by combining traditional calibration with AI and residual physics, presenting a highly promising approach. We present a residual physics-based strategy using gradient tree boosting and physics-guided data generation. The explainable AI framework SHapley Additive exPlanations (SHAPs) was used to identify known physical effects with learned patterns. In addition, the models were tested against basic physical laws. We were able to improve the CTR significantly (more than 20%) for clinically relevant detectors of 19 mm height, reaching CTRs of 185 ps (450-550 keV).

摘要

人工智能(AI)正在进入医学成像领域,主要用于增强图像重建。然而,从信号检测到计算的整个处理过程中的改进可能会带来显著的好处。这项工作提出了一种使用机器学习(ML)和残余物理进行探测器优化的新颖且通用的方法。我们将该概念应用于正电子发射断层扫描(PET),旨在提高符合时间分辨率(CTR)。PET通过使用闪烁探测器检测光子来可视化体内的代谢过程。提高CTR性能具有减少患者放射性剂量暴露的优势。具有复杂概念和读出拓扑结构的现代PET探测器代表了需要专用校准技术的复杂物理和电子系统。传统方法主要依赖于成功描述探测器主要特性的解析公式。然而,在考虑高阶效应时,将理论模型与实验现实相匹配会出现额外的复杂性。我们的工作通过将传统校准与AI和残余物理相结合来应对这一挑战,提出了一种非常有前景的方法。我们提出了一种基于残余物理的策略,使用梯度树提升和物理引导的数据生成。可解释的AI框架SHapley Additive exPlanations(SHAPs)被用于识别具有学习模式的已知物理效应。此外,还根据基本物理定律对模型进行了测试。对于高度为19毫米的临床相关探测器,我们能够将CTR显著提高(超过20%),达到185皮秒(450 - 550千电子伏特)的CTR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验