Suppr超能文献

基于机器学习的 PET 探测器定时校准的整体评估,适用于不同数据稀疏度的情况。

Holistic evaluation of a machine learning-based timing calibration for PET detectors under varying data sparsity.

机构信息

Department of Physics of Molecular Imaging Systems (PMI), Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.

Siemens Healthineers AG, Forchheim, Germany.

出版信息

Phys Med Biol. 2024 Jul 26;69(15). doi: 10.1088/1361-6560/ad63ec.

Abstract

Modern PET scanners offer precise TOF information, improving the SNR of the reconstructed images. Timing calibrations are performed to reduce the worsening effects of the system components and provide valuable TOF information. Traditional calibration procedures often provide static or linear corrections, with the drawback that higher-order skews or event-to-event corrections are not addressed. Novel research demonstrated significant improvements in the reachable timing resolutions when combining conventional calibration approaches with machine learning, with the disadvantage of extensive calibration times infeasible for a clinical application. In this work, we made the first steps towards an in-system application and analyzed the effects of varying data sparsity on a machine learning timing calibration, aiming to accelerate the calibration time. Furthermore, we demonstrated the versatility of our calibration concept by applying the procedure for the first time to analog readout technology.We modified experimentally acquired calibration data used for training regarding their statistical and spatial sparsity, mimicking reduced measurement time and variability of the training data. Trained models were tested on unseen test data, characterized by fine spatial sampling and rich statistics. In total, 80 decision tree models with the same hyperparameter settings, were trained and holistically evaluated regarding data scientific, physics-based, and PET-based quality criteria.The calibration procedure can be heavily reduced from several days to some minutes without sacrificing quality and still significantly improving the timing resolution from(304±5)psto(216±1)pscompared to conventionally used analytical calibration methods.This work serves as the first step in making the developed machine learning-based calibration suitable for an in-system application to profit from the method's capabilities on the system level. Furthermore, this work demonstrates the functionality of the methodology on detectors using analog readout technology. The proposed holistic evaluation criteria here serve as a guideline for future evaluations of machine learning-based calibration approaches.

摘要

现代 PET 扫描仪提供精确的 TOF 信息,提高了重建图像的 SNR。进行定时校准以减少系统组件的恶化影响,并提供有价值的 TOF 信息。传统的校准程序通常提供静态或线性校正,缺点是不能解决更高阶的偏斜或事件到事件的校正。新的研究表明,当将传统的校准方法与机器学习相结合时,在可达到的定时分辨率方面有显著的改进,但缺点是校准时间过长,无法用于临床应用。在这项工作中,我们朝着系统内应用迈出了第一步,并分析了在机器学习定时校准中变化的数据稀疏性对其的影响,旨在加速校准时间。此外,我们通过首次将该程序应用于模拟读出技术,展示了我们校准概念的多功能性。我们针对统计和空间稀疏性修改了用于训练的实验获取的校准数据,模拟了测量时间的减少和训练数据的可变性。在看不见的测试数据上对训练有素的模型进行了测试,这些数据具有精细的空间采样和丰富的统计信息。总共训练了 80 个具有相同超参数设置的决策树模型,并根据数据科学、基于物理和基于 PET 的质量标准对其进行整体评估。校准程序可以从几天缩短到几分钟,而不会牺牲质量,并且与传统使用的分析校准方法相比,仍然可以显著提高定时分辨率,从(304±5)ps 提高到(216±1)ps。这项工作是将开发的基于机器学习的校准方法适用于系统内应用的第一步,以便在系统级别上受益于该方法的能力。此外,这项工作还展示了基于模拟读出技术的探测器的方法的功能。这里提出的整体评估标准可以作为未来基于机器学习的校准方法评估的指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验