Epiney Derek, Morales Chaya Gonzalo N, Dillon Noah R, Lai Sen-Lin, Doe Chris Q
Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403.
bioRxiv. 2025 Mar 3:2023.12.10.571022. doi: 10.1101/2023.12.10.571022.
In both invertebrates such as and vertebrates such as mouse or human, the brain contains the most diverse population of cell types of any tissue. It is generally accepted that transcriptional diversity is an early step in generating neuronal and glial diversity, followed by the establishment of a unique gene expression profile that determines morphology, connectivity, and function. In , there are two types of neural stem cells, called Type 1 (T1) and Type 2 (T2) neuroblasts. In contrast to T1 neuroblasts, T2 neuroblasts generate intermediate neural progenitors (INPs) that expand the number and diversity of cell types. The diversity of T2-derived neurons contributes a large portion of the central complex (CX), a conserved brain region that plays a role in sensorimotor integration. Recent work has revealed much of the connectome of the CX, but how this connectome is assembled remains unclear. Mapping the transcriptional diversity of neurons derived from T2 neuroblasts is a necessary step in linking transcriptional profile to the assembly of the adult brain. Here we perform single nuclei RNA sequencing of T2 neuroblast-derived adult neurons and glia. We identify clusters containing all known classes of glia, clusters that are male/female enriched, and 161 neuron-specific clusters. We map neurotransmitter and neuropeptide expression and identify unique transcription factor combinatorial codes for each cluster (presumptive neuron subtype). This is a necessary step that directs functional studies to determine whether each transcription factor combinatorial code specifies a distinct neuron type within the CX. We map several columnar neuron subtypes to distinct clusters and identify two neuronal classes (NPF+ and AstA+) that both map to two closely related clusters. Our data support the hypothesis that each transcriptional cluster represents one or a few closely related neuron subtypes.
在诸如果蝇等无脊椎动物以及诸如小鼠或人类等脊椎动物中,大脑包含了所有组织中细胞类型最为多样的群体。人们普遍认为,转录多样性是产生神经元和神经胶质细胞多样性的早期步骤,随后会建立起独特的基因表达谱,该谱决定了细胞的形态、连接性和功能。在果蝇中,存在两种类型的神经干细胞,称为1型(T1)和2型(T2)神经母细胞。与T1神经母细胞不同,T2神经母细胞会产生中间神经祖细胞(INP),这些祖细胞会增加细胞类型的数量和多样性。源自T2的神经元的多样性在中央复合体(CX)中占了很大一部分,CX是一个保守的脑区,在感觉运动整合中发挥作用。最近的研究揭示了CX的许多连接组,但这个连接组是如何组装的仍不清楚。绘制源自T2神经母细胞的神经元的转录多样性图谱,是将转录谱与成人大脑组装联系起来的必要步骤。在这里,我们对源自T2神经母细胞的成体神经元和神经胶质细胞进行了单核RNA测序。我们识别出了包含所有已知神经胶质细胞类别的簇、富含雄性/雌性的簇,以及161个神经元特异性簇。我们绘制了神经递质和神经肽的表达图谱,并为每个簇(假定的神经元亚型)识别出独特的转录因子组合代码。这是指导功能研究以确定每个转录因子组合代码是否在CX内指定一种独特神经元类型的必要步骤。我们将几种柱状神经元亚型映射到不同的簇,并识别出两个都映射到两个密切相关簇的神经元类别(NPF+和AstA+)。我们的数据支持这样一种假设,即每个转录簇代表一种或几种密切相关的神经元亚型。