Suppr超能文献

超疏水表面商业化及广泛实际应用的挑战与策略

Challenges and strategies for commercialization and widespread practical applications of superhydrophobic surfaces.

作者信息

Li Lingxiao, Wei Jinfei, Zhang Junping, Li Bucheng, Yang Yanfei, Zhang Jiaojiao

机构信息

Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China.

出版信息

Sci Adv. 2023 Oct 20;9(42):eadj1554. doi: 10.1126/sciadv.adj1554.

Abstract

Superhydrophobic (SH) surfaces have progressed rapidly in fundamental research over the past 20 years, but their practical applications lag far behind. In this perspective, we first present the findings of a survey on the current state of SH surfaces including fundamental research, patenting, and commercialization. On the basis of the survey and our experience, this perspective explores the challenges and strategies for commercialization and widespread practical applications of SH surfaces. The comprehensive performances, preparation methods, and application scenarios of SH surfaces are the major constraints. These challenges should be addressed simultaneously, and the actionable strategies are provided. We then highlight the standard test methods of the comprehensive performances including mechanical stability, impalement resistance, and weather resistance. Last, the prospects of SH surfaces in the future are discussed. We anticipate that SH surfaces may be widely commercialized and used in practical applications around the year 2035 through combination of the suggested strategies and input from both academia and industry.

摘要

在过去20年里,超疏水(SH)表面的基础研究取得了迅速进展,但其实际应用却远远滞后。从这个角度来看,我们首先展示了一项关于SH表面现状的调查结果,包括基础研究、专利申请和商业化情况。基于这项调查以及我们的经验,本视角探讨了SH表面商业化及广泛实际应用所面临的挑战和策略。SH表面的综合性能、制备方法和应用场景是主要制约因素。这些挑战应同时加以应对,并提供了可行的策略。然后,我们重点介绍了综合性能的标准测试方法,包括机械稳定性、抗刺穿性和耐候性。最后,讨论了SH表面未来的前景。我们预计,通过结合所建议的策略以及学术界和产业界的投入,SH表面可能在2035年左右实现广泛商业化并应用于实际。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb3e/10588945/07d8e1fdf77f/sciadv.adj1554-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验