Prasad Amit Kumar, Šebesta Jakub, Esteban-Puyuelo Raquel, Maldonado Pablo, Ji Shaozheng, Sanyal Biplab, Grånäs Oscar, Weissenrieder Jonas
Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Materials Theory, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden.
ACS Nano. 2023 Nov 14;17(21):21006-21017. doi: 10.1021/acsnano.3c03827. Epub 2023 Oct 20.
Thermoelectric materials play a vital role in the pursuit of a sustainable energy system by allowing the conversion of waste heat to electric energy. Low thermal conductivity is essential to achieving high-efficiency conversion. The conductivity depends on an interplay between the phononic and electronic properties of the nonequilibrium state. Therefore, obtaining a comprehensive understanding of nonequilibrium dynamics of the electronic and phononic subsystems as well as their interactions is key for unlocking the microscopic mechanisms that ultimately govern thermal conductivity. A benchmark material that exhibits ultralow thermal conductivity is SnSe. We study the nonequilibrium phonon dynamics induced by an excited electron population using a framework combining ultrafast electron diffuse scattering and nonequilibrium kinetic theory. This in-depth approach provides a fundamental understanding of energy transfer in the spatiotemporal domain. Our analysis explains the dynamics leading to the observed low thermal conductivity, which we attribute to a mode-dependent tendency to nonconservative phonon scattering. The results offer a penetrating perspective on energy transport in condensed matter with far-reaching implications for rational design of advanced materials with tailored thermal properties.
热电材料通过将废热转化为电能,在追求可持续能源系统中发挥着至关重要的作用。低导热率对于实现高效转化至关重要。电导率取决于非平衡态的声子和电子特性之间的相互作用。因此,全面了解电子和声子子系统的非平衡动力学及其相互作用,是揭示最终控制热导率的微观机制的关键。一种具有超低导热率的基准材料是SnSe。我们使用超快电子漫散射和非平衡动力学理论相结合的框架,研究了由激发电子群体引起的非平衡声子动力学。这种深入的方法提供了对时空域中能量转移的基本理解。我们的分析解释了导致观察到的低导热率的动力学过程,我们将其归因于与模式相关的非保守声子散射趋势。这些结果为凝聚态物质中的能量传输提供了深刻的见解,对具有定制热性能的先进材料的合理设计具有深远的影响。