René de Cotret Laurent P, Otto Martin R, Pöhls Jan-Hendrik, Luo Zhongzhen, Kanatzidis Mercouri G, Siwick Bradley J
Department of Physics, Center for the Physics of Materials, McGill University, Montréal, QC H3A 2T8, Canada.
Department of Chemistry, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2022 Jan 18;119(3). doi: 10.1073/pnas.2113967119.
SnSe is a layered material that currently holds the record for bulk thermoelectric efficiency. The primary determinant of this high efficiency is thought to be the anomalously low thermal conductivity resulting from strong anharmonic coupling within the phonon system. Here we show that the nature of the carrier system in SnSe is also determined by strong coupling to phonons by directly visualizing polaron formation in the material. We employ ultrafast electron diffraction and diffuse scattering to track the response of phonons in both momentum and time to the photodoping of free carriers across the bandgap, observing the bimodal and anisotropic lattice distortions that drive carrier localization. Relatively large (18.7 Å), quasi-one-dimensional (1D) polarons are formed on the 300-fs timescale with smaller (4.2 Å) 3D polarons taking an order of magnitude longer (4 ps) to form. This difference appears to be a consequence of the profoundly anisotropic electron-phonon coupling in SnSe, with strong Fröhlich coupling only to zone-center polar optical phonons. These results demonstrate a high density of polarons in SnSe at optimal doping levels. Strong electron-phonon coupling is critical to the thermoelectric performance of this benchmark material and, potentially, high performance thermoelectrics more generally.
硒化锡是一种层状材料,目前在体相热电效率方面保持着纪录。这种高效率的主要决定因素被认为是声子系统内强非谐耦合导致的异常低热导率。在这里,我们通过直接观察材料中的极化子形成,表明硒化锡中载流子系统的性质也由与声子的强耦合所决定。我们采用超快电子衍射和漫散射来追踪声子在动量和时间上对跨越带隙的自由载流子光掺杂的响应,观察驱动载流子局域化的双峰和各向异性晶格畸变。相对较大(18.7 Å)的准一维(1D)极化子在300飞秒时间尺度上形成,而较小(4.2 Å)的三维(3D)极化子形成时间要长一个数量级(4皮秒)。这种差异似乎是硒化锡中电子 - 声子耦合具有深刻各向异性的结果,仅与区中心极化光学声子存在强弗罗利希耦合。这些结果表明在最佳掺杂水平下硒化锡中极化子密度很高。强电子 - 声子耦合对于这种基准材料以及更普遍的高性能热电材料的热电性能至关重要。