Suppr超能文献

基于 SERS 图谱结合化学计量学,实现对患者样本中甲氨蝶呤的精准定量分析。

SERS mapping combined with chemometrics, for accurate quantification of methotrexate from patient samples.

机构信息

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Jan 15;305:123536. doi: 10.1016/j.saa.2023.123536. Epub 2023 Oct 14.

Abstract

Despite the technological development in Raman instrumentation that has democratized access to 2D sample scanning capabilities, most quantitative surface-enhanced Raman scattering (SERS) analyses are still performed by only acquiring a single or a few spectra per sample and performing univariate data analysis on those. This strategy can however reach its limit when analytes need to be detected and quantified in complex matrices. In that case, surface fouling and competition between the target analyte and interfering compounds can impair univariate SERS data analysis, underlining the need for a more in-depth data analysis strategy based on exploiting of full-spectrum information. In this paper, a multivariate data analysis strategy was developed, for analyzing SERS maps of methotrexate (MTX) from patient samples, including all steps from baseline correction, selection of wavelength, and the relevant pixels in the map (image threshold segmentation), as well as quantitative model construction based on partial-least squares regression. Among the different baseline correction methods evaluated, standard normal variable transformation and Savitzky-Golay smoothing proved to be more suitable, while the genetic algorithm wavelength screening method was able to screen out MTX-related SERS spectral regions more efficiently. Importantly, with the here-developed process, it was sufficient to use MTX-spiked commercial serum when building quantitative models, removing the need to work with MTX-spiked patient samples, and consequently enabling time- and resource-saving quantitative analyses. Besides, the developed multivariate data analysis approach showed superior performances compared with univariate analysis, with 30 % improved sensitivity (detection limit of 5.7 µM), 25 % higher reproducibility (average relative standard variation of 15.6 %), and 110 % better accuracy (average prediction error of -10.5 %).

摘要

尽管拉曼仪器技术的发展使二维样品扫描功能民主化,但大多数定量表面增强拉曼散射(SERS)分析仍然仅通过采集每个样品的单个或几个光谱并对这些光谱进行单变量数据分析来进行。然而,当需要在复杂基质中检测和定量分析物时,这种策略可能会达到极限。在这种情况下,表面污垢和目标分析物与干扰化合物之间的竞争可能会损害单变量 SERS 数据分析,这凸显了需要一种更深入的数据分析策略,该策略基于充分利用全谱信息。在本文中,开发了一种多元数据分析策略,用于分析来自患者样本的甲氨蝶呤(MTX)的 SERS 图谱,包括从基线校正、波长选择以及图谱中相关像素(图像阈值分割)以及基于偏最小二乘回归的定量模型构建的所有步骤。在所评估的不同基线校正方法中,标准正态变量变换和 Savitzky-Golay 平滑被证明更合适,而遗传算法波长筛选方法能够更有效地筛选出与 MTX 相关的 SERS 光谱区域。重要的是,通过这里开发的过程,在构建定量模型时,仅使用 MTX 加标商业血清就足够了,无需使用 MTX 加标患者样本,从而实现了节省时间和资源的定量分析。此外,与单变量分析相比,所开发的多元数据分析方法表现出更好的性能,灵敏度提高了 30%(检测限为 5.7µM),重现性提高了 25%(平均相对标准偏差为 15.6%),准确性提高了 110%(平均预测误差为-10.5%)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验