Suppr超能文献

利用纳米压痕试验和数值模拟推断 SARS-CoV-2 病毒颗粒的力学性能。

Inferring mechanical properties of the SARS-CoV-2 virus particle with nano-indentation tests and numerical simulations.

机构信息

CMM Lab, Faculty of Mechanical Engineering, OTH Regensburg, 93053, Regensburg, Germany.

Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, H-1094, Hungary; ELKH-SE Biophysical Virology Research Group, Budapest, H-1094, Hungary.

出版信息

J Mech Behav Biomed Mater. 2023 Dec;148:106153. doi: 10.1016/j.jmbbm.2023.106153. Epub 2023 Oct 8.

Abstract

The pandemic caused by the SARS-CoV-2 virus has claimed more than 6.5 million lives worldwide. This global challenge has led to accelerated development of highly effective vaccines tied to their ability to elicit a sustained immune response. While numerous studies have focused primarily on the spike (S) protein, less is known about the interior of the virus. Here we propose a methodology that combines several experimental and simulation techniques to elucidate the internal structure and mechanical properties of the SARS-CoV-2 virus. The mechanical response of the virus was analyzed by nanoindentation tests using a novel flat indenter and evaluated in comparison to a conventional sharp tip indentation. The elastic properties of the viral membrane were estimated by analytical solutions, molecular dynamics (MD) simulations on a membrane patch and by a 3D Finite Element (FE)-beam model of the virion's spike protein and membrane molecular structure. The FE-based inverse engineering approach provided a reasonable reproduction of the mechanical response of the virus from the sharp tip indentation and was successfully verified against the flat tip indentation results. The elastic modulus of the viral membrane was estimated in the range of 7-20 MPa. MD simulations showed that the presence of proteins significantly reduces the fracture strength of the membrane patch. However, FE simulations revealed an overall high fracture strength of the virus, with a mechanical behavior similar to the highly ductile behavior of engineering metallic materials. The failure mechanics of the membrane during sharp tip indentation includes progressive damage combined with localized collapse of the membrane due to severe bending. Furthermore, the results support the hypothesis of a close association of the long membrane proteins (M) with membrane-bound hexagonally packed ribonucleoproteins (RNPs). Beyond improved understanding of coronavirus structure, the present findings offer a knowledge base for the development of novel prevention and treatment methods that are independent of the immune system.

摘要

由 SARS-CoV-2 病毒引起的大流行已在全球范围内导致超过 650 万人死亡。这一全球性挑战加速了高效疫苗的开发,这些疫苗与它们引发持续免疫反应的能力有关。虽然许多研究主要集中在刺突(S)蛋白上,但对病毒内部的了解较少。在这里,我们提出了一种结合多种实验和模拟技术的方法,以阐明 SARS-CoV-2 病毒的内部结构和力学性能。使用新型平压头进行纳米压痕测试分析了病毒的机械响应,并与传统的尖压痕进行了比较。通过解析解、膜片上的分子动力学(MD)模拟以及病毒的刺突蛋白和膜分子结构的三维有限元(FE)梁模型,估算了病毒膜的弹性特性。基于 FE 的反向工程方法从尖压痕合理地再现了病毒的机械响应,并成功地通过平压痕结果进行了验证。病毒膜的弹性模量估计在 7-20 MPa 范围内。MD 模拟表明,蛋白质的存在显著降低了膜片的断裂强度。然而,FE 模拟显示病毒具有整体高断裂强度,其力学行为类似于工程金属材料的高延展性行为。在尖压痕过程中,膜的失效力学包括渐进性损伤以及膜的局部坍塌,这是由于严重弯曲造成的。此外,研究结果支持长膜蛋白(M)与膜结合的六方排列核糖核蛋白(RNP)密切相关的假设。除了对冠状病毒结构有更好的了解外,本研究结果还为开发独立于免疫系统的新型预防和治疗方法提供了知识库。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验