School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Veterinary Research Institute, CZ-62100 Brno, Czech Republic.
ACS Appl Mater Interfaces. 2024 Sep 18;16(37):49176-49185. doi: 10.1021/acsami.4c11057. Epub 2024 Sep 6.
Ultraviolet-C (UV-C) radiation and ozone gas are potential mechanisms employed to inactivate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), each exhibiting distinct molecular-level modalities of action. To elucidate these disparities and deepen our understanding, we delve into the intricacies of SARS-CoV-2 inactivation via UV-C and ozone gas treatments, exploring their distinct molecular-level impacts utilizing a suite of advanced techniques, including biological atomic force microscopy (Bio-AFM) and single virus force spectroscopy (SVFS). Whereas UV-C exhibited no perceivable alterations in virus size or surface topography, ozone gas treatment elucidated pronounced changes in both parameters, intensifying with prolonged exposure. Furthermore, a nuanced difference was observed in virus-host cell binding post-treatment: ozone gas distinctly reduced SARS-CoV-2 binding to host cells, while UV-C maintained the status quo. The results derived from these methodical explorations underscore the pivotal role of advanced Bio-AFM techniques and SVFS in enhancing our understanding of virus inactivation mechanisms, offering invaluable insights for future research and applications in viral contamination mitigation.
紫外线-C(UV-C)辐射和臭氧气体是用于灭活严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的潜在机制,它们各自表现出不同的分子水平作用模式。为了阐明这些差异并加深我们的理解,我们深入研究了通过 UV-C 和臭氧气体处理使 SARS-CoV-2 失活的复杂过程,利用一系列先进技术,包括生物原子力显微镜(Bio-AFM)和单病毒力谱学(SVFS),探究它们在分子水平上的不同影响。虽然 UV-C 对病毒大小或表面形貌没有明显的改变,但臭氧气体处理揭示了这两个参数的显著变化,并且随着暴露时间的延长而加剧。此外,在处理后观察到病毒-宿主细胞结合的细微差异:臭氧气体明显降低了 SARS-CoV-2 与宿主细胞的结合,而 UV-C 则保持不变。这些系统探索得出的结果强调了先进的 Bio-AFM 技术和 SVFS 在增强我们对病毒失活动力学理解方面的关键作用,为未来在病毒污染缓解方面的研究和应用提供了宝贵的见解。