The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072, Brisbane, QLD, Australia.
Nat Commun. 2023 Oct 21;14(1):6673. doi: 10.1038/s41467-023-42166-w.
A true circular carbon economy must upgrade waste greenhouse gases. C1-based biomanufacturing is an attractive solution, in which one carbon (C1) molecules (e.g. CO, formate, methanol, etc.) are converted by microbial cell factories into value-added goods (i.e. food, feed, and chemicals). To render C1-based biomanufacturing cost-competitive, we must adapt microbial metabolism to perform chemical conversions at high rates and yields. To this end, the biotechnology community has undertaken two (seemingly opposing) paths: optimizing natural C1-trophic microorganisms versus engineering synthetic C1-assimilation de novo in model microorganisms. Here, we pose how these approaches can instead create synergies for strengthening the competitiveness of C1-based biomanufacturing as a whole.
真正的循环碳经济必须升级废气温室气体。基于 C1 的生物制造是一种有吸引力的解决方案,其中一个碳(C1)分子(例如 CO、甲酸盐、甲醇等)被微生物细胞工厂转化为增值商品(即食品、饲料和化学品)。为了使基于 C1 的生物制造具有成本竞争力,我们必须使微生物代谢适应高速率和高收率的化学转化。为此,生物技术界已经采取了两条(看似对立的)途径:优化天然 C1 营养微生物与工程合成 C1 从头在模式微生物中同化。在这里,我们提出这些方法如何能够为加强 C1 为基础的生物制造的整体竞争力创造协同作用。