Halilaj Eni, Rajagopal Apoorva, Fiterau Madalina, Hicks Jennifer L, Hastie Trevor J, Delp Scott L
Department of Mechanical Engineering, Carnegie Mellon University, United States.
Department of Mechanical Engineering, Stanford University, United States.
J Biomech. 2018 Nov 16;81:1-11. doi: 10.1016/j.jbiomech.2018.09.009. Epub 2018 Sep 13.
Traditional laboratory experiments, rehabilitation clinics, and wearable sensors offer biomechanists a wealth of data on healthy and pathological movement. To harness the power of these data and make research more efficient, modern machine learning techniques are starting to complement traditional statistical tools. This survey summarizes the current usage of machine learning methods in human movement biomechanics and highlights best practices that will enable critical evaluation of the literature. We carried out a PubMed/Medline database search for original research articles that used machine learning to study movement biomechanics in patients with musculoskeletal and neuromuscular diseases. Most studies that met our inclusion criteria focused on classifying pathological movement, predicting risk of developing a disease, estimating the effect of an intervention, or automatically recognizing activities to facilitate out-of-clinic patient monitoring. We found that research studies build and evaluate models inconsistently, which motivated our discussion of best practices. We provide recommendations for training and evaluating machine learning models and discuss the potential of several underutilized approaches, such as deep learning, to generate new knowledge about human movement. We believe that cross-training biomechanists in data science and a cultural shift toward sharing of data and tools are essential to maximize the impact of biomechanics research.
传统的实验室实验、康复诊所和可穿戴传感器为生物力学家提供了大量关于健康和病理运动的数据。为了利用这些数据的力量并提高研究效率,现代机器学习技术开始补充传统的统计工具。本综述总结了机器学习方法在人体运动生物力学中的当前应用,并强调了有助于对文献进行批判性评估的最佳实践。我们在PubMed/Medline数据库中搜索了使用机器学习研究肌肉骨骼和神经肌肉疾病患者运动生物力学的原创研究文章。大多数符合我们纳入标准的研究集中于对病理运动进行分类、预测疾病发展风险、估计干预效果或自动识别活动以促进门诊外患者监测。我们发现研究构建和评估模型的方式不一致,这促使我们讨论最佳实践。我们为训练和评估机器学习模型提供建议,并讨论几种未充分利用的方法(如深度学习)在生成关于人体运动的新知识方面的潜力。我们认为,对生物力学家进行数据科学交叉培训以及向数据和工具共享的文化转变对于最大化生物力学研究的影响至关重要。