Suppr超能文献

PaCL:通过元数据细化进行患者感知对比学习,实现广义早期疾病诊断。

PaCL: Patient-aware contrastive learning through metadata refinement for generalized early disease diagnosis.

机构信息

Indepedent Researcher, India.

Indian Institute of Technology Roorkee, India.

出版信息

Comput Biol Med. 2023 Dec;167:107569. doi: 10.1016/j.compbiomed.2023.107569. Epub 2023 Oct 17.

Abstract

Early diagnosis plays a pivotal role in effectively treating numerous diseases, especially in healthcare scenarios where prompt and accurate diagnoses are essential. Contrastive learning (CL) has emerged as a promising approach for medical tasks, offering advantages over traditional supervised learning methods. However, in healthcare, patient metadata contains valuable clinical information that can enhance representations, yet existing CL methods often overlook this data. In this study, we propose an novel approach that leverages both clinical information and imaging data in contrastive learning to enhance model generalization and interpretability. Furthermore, existing contrastive methods may be prone to sampling bias, which can lead to the model capturing spurious relationships and exhibiting unequal performance across protected subgroups frequently encountered in medical settings. To address these limitations, we introduce Patient-aware Contrastive Learning (PaCL), featuring an inter-class separability objective (IeSO) and an intra-class diversity objective (IaDO). IeSO harnesses rich clinical information to refine samples, while IaDO ensures the necessary diversity among samples to prevent class collapse. We demonstrate the effectiveness of PaCL both theoretically through causal refinements and empirically across six real-world medical imaging tasks spanning three imaging modalities: ophthalmology, radiology, and dermatology. Notably, PaCL outperforms previous techniques across all six tasks.

摘要

早期诊断在有效治疗许多疾病方面起着关键作用,特别是在医疗保健领域,及时和准确的诊断至关重要。对比学习(CL)已经成为医学任务的一种有前途的方法,相对于传统的监督学习方法具有优势。然而,在医疗保健中,患者元数据包含有价值的临床信息,可以增强表示,但现有的 CL 方法往往忽略了这些数据。在这项研究中,我们提出了一种新的方法,利用对比学习中的临床信息和成像数据来增强模型的泛化能力和可解释性。此外,现有的对比方法可能容易受到抽样偏差的影响,这可能导致模型捕捉到虚假关系,并在医疗环境中经常遇到的受保护亚组中表现出不平等的性能。为了解决这些限制,我们引入了基于患者的对比学习(PaCL),具有类间可分离性目标(IeSO)和类内多样性目标(IaDO)。IeSO 利用丰富的临床信息来优化样本,而 IaDO 确保样本之间具有必要的多样性,以防止类崩溃。我们通过因果细化在理论上和在跨越三个成像模态的六个真实医学成像任务上进行实证评估,证明了 PaCL 的有效性:眼科、放射科和皮肤科。值得注意的是,PaCL 在所有六个任务中都优于以前的技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验