Suppr超能文献

RadBERT-CL:用于放射学报告分类的事实感知对比学习

RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification.

作者信息

Jaiswal Ajay, Tang Liyan, Ghosh Meheli, Rousseau Justin F, Peng Yifan, Ding Ying

机构信息

The University of Texas at Austin, United States.

Central University of Gujarat, India.

出版信息

Proc Mach Learn Res. 2021 Dec;158:196-208.

Abstract

Radiology reports are unstructured and contain the imaging findings and corresponding diagnoses transcribed by radiologists which include clinical facts and negated and/or uncertain statements. Extracting pathologic findings and diagnoses from radiology reports is important for quality control, population health, and monitoring of disease progress. Existing works, primarily rely either on rule-based systems or transformer-based pre-trained model fine-tuning, but could not take the factual and uncertain information into consideration, and therefore generate false positive outputs. In this work, we introduce three sedulous augmentation techniques which retain factual and critical information while generating augmentations for contrastive learning. We introduce RadBERT-CL, which fuses these information into BlueBert via a self-supervised contrastive loss. Our experiments on MIMIC-CXR show superior performance of RadBERT-CL on fine-tuning for multi-class, multi-label report classification. We illustrate that when few labeled data are available, RadBERT-CL outperforms conventional SOTA transformers (BERT/BlueBert) by significantly larger margins (6-11%). We also show that the representations learned by RadBERT-CL can capture critical medical information in the latent space.

摘要

放射学报告是非结构化的,包含放射科医生转录的影像学发现和相应诊断,其中包括临床事实以及否定和/或不确定的陈述。从放射学报告中提取病理发现和诊断对于质量控制、人群健康以及疾病进展监测至关重要。现有工作主要依赖基于规则的系统或基于Transformer的预训练模型微调,但无法考虑事实性和不确定性信息,因此会产生误报。在这项工作中,我们引入了三种精心设计的增强技术,这些技术在为对比学习生成增强时保留了事实性和关键信息。我们引入了RadBERT-CL,它通过自监督对比损失将这些信息融合到BlueBert中。我们在MIMIC-CXR上的实验表明,RadBERT-CL在多类、多标签报告分类的微调方面具有卓越性能。我们证明,当可用的标记数据很少时,RadBERT-CL比传统的最优Transformer(BERT/BlueBert)有显著更大的优势(6-11%)。我们还表明,RadBERT-CL学习到的表示可以在潜在空间中捕获关键医学信息。

相似文献

2
RadBERT: Adapting Transformer-based Language Models to Radiology.RadBERT:使基于Transformer的语言模型适用于放射学领域。
Radiol Artif Intell. 2022 Jun 15;4(4):e210258. doi: 10.1148/ryai.210258. eCollection 2022 Jul.
8
Self-Supervised Contrastive Representation Learning for Semi-Supervised Time-Series Classification.用于半监督时间序列分类的自监督对比表示学习
IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):15604-15618. doi: 10.1109/TPAMI.2023.3308189. Epub 2023 Nov 3.

引用本文的文献

1
A Large Language Model to Detect Negated Expressions in Radiology Reports.一种用于检测放射学报告中否定表达的大语言模型。
J Imaging Inform Med. 2025 Jun;38(3):1297-1303. doi: 10.1007/s10278-024-01274-9. Epub 2024 Sep 25.
5
Less Likely Brainstorming: Using Language Models to Generate Alternative Hypotheses.不太可能的头脑风暴:使用语言模型生成替代假设。
Proc Conf Assoc Comput Linguist Meet. 2023 Jul;2023:12532-12555. doi: 10.18653/v1/2023.findings-acl.794.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验