Jaiswal Ajay, Li Tianhao, Zander Cyprian, Han Yan, Rousseau Justin F, Peng Yifan, Ding Ying
UT Austin.
MIS, Germany.
Proc IEEE Int Conf Data Min. 2021 Dec;2021:1132-1137. doi: 10.1109/icdm51629.2021.00134.
Computer-aided diagnosis plays a salient role in more accessible and accurate cardiopulmonary diseases classification and localization on chest radiography. Millions of people get affected and die due to these diseases without an accurate and timely diagnosis. Recently proposed contrastive learning heavily relies on data augmentation, especially positive data augmentation. However, generating clinically-accurate data augmentations for medical images is extremely difficult because the common data augmentation methods in computer vision, such as sharp, blur, and crop operations, can severely alter the clinical settings of medical images. In this paper, we proposed a novel and simple data augmentation method based on patient metadata and supervised knowledge to create clinically accurate positive and negative augmentations for chest X-rays. We introduce an end-to-end framework, SCALP, which extends the self-supervised contrastive approach to a supervised setting. Specifically, SCALP pulls together chest X-rays from the same patient (positive keys) and pushes apart chest X-rays from different patients (negative keys). In addition, it uses ResNet-50 along with the triplet-attention mechanism to identify cardiopulmonary diseases, and Grad-CAM++ to highlight the abnormal regions. Our extensive experiments demonstrate that SCALP outperforms existing baselines with significant margins in both classification and localization tasks. Specifically, the average classification AUCs improve from 82.8% (SOTA using DenseNet-121) to 83.9% (SCALP using ResNet-50), while the localization results improve on average by 3.7% over different IoU thresholds.
计算机辅助诊断在胸部X光片上更易于获取且准确的心肺疾病分类和定位中发挥着显著作用。数以百万计的人因这些疾病而受到影响并死亡,却没有得到准确及时的诊断。最近提出的对比学习严重依赖数据增强,尤其是正样本数据增强。然而,为医学图像生成临床准确的数据增强极其困难,因为计算机视觉中的常见数据增强方法,如锐化、模糊和裁剪操作,会严重改变医学图像的临床背景。在本文中,我们提出了一种基于患者元数据和监督知识的新颖且简单的数据增强方法,用于为胸部X光片创建临床准确的正样本和负样本增强。我们引入了一个端到端框架SCALP,它将自监督对比方法扩展到监督设置。具体而言,SCALP将来自同一患者的胸部X光片拉到一起(正样本键),并将来自不同患者的胸部X光片推开(负样本键)。此外,它使用ResNet-50以及三重注意力机制来识别心肺疾病,并使用Grad-CAM++来突出显示异常区域。我们广泛的实验表明,SCALP在分类和定位任务中均以显著优势优于现有基线。具体来说,平均分类AUC从82.8%(使用DenseNet-121的最优方法)提高到83.9%(使用ResNet-50的SCALP),而定位结果在不同IoU阈值下平均提高了3.7%。