Wang Xianchao, Zhao Jing, Chen Ye, Zhang Xuan, Zhu Kai, Wang Qian, Yan Jun, Cao Dianxue, Wang Guiling
Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
Small. 2024 Mar;20(9):e2307747. doi: 10.1002/smll.202307747. Epub 2023 Oct 22.
The pursuit of high-performance batteries has propelled the investigation into advanced materials and design methodologies. Herein, the yolk-shell MnSe/ZnSe heterojunction encapsulated in hollow carbontubes (MnSe/ZnSe@HCTs) is prepared as a prospective electrode material for sodium/potassium batteries. The band structure in the heterojunction is methodically adjusted and regulated by intentionally utilizing Mn with unpaired electrons in the 3d orbital. The ZnSe shell confer effectively mitigates volumetric expansion challenges inherent in ions insertion/extraction processes and 1D carbontubular conductive substrate avert the aggregation of MnSe/ZnSe nanoparticles. Concurrently, the heterojunctions implantation induces sublattice distortion and charge redistribution, enriching active sites and regulating band structure. The selenium vacancies within these heterojunctions contribute to the provision of abundant active sites, thereby promoting efficient ions insertion/extraction. In sodium-ion batteries (SIBs), MnSe/ZnSe@HCTs present a superior capacity of 475 mA hg at 0.1 A g and sustains a capacity of 408.5 mAh g even after 1000 cycles. In potassium-ion batteries (KIBs), MnSe/ZnSe@HCTs deliver a higher specific capacity of 422 mAh g at a current density of 0.1 A g and maintain a high coulombic efficiency of 99% after 1000 cycles. The yolk-shell structured MnSe/ZnSe heterojunction demonstrates excellent electrode properties for high-performance sodium/potassium batteries, holding significant promise for future energy storage applications.
对高性能电池的追求推动了对先进材料和设计方法的研究。在此,制备了封装在中空碳管中的蛋黄壳型MnSe/ZnSe异质结(MnSe/ZnSe@HCTs)作为钠/钾电池的一种潜在电极材料。通过有意利用3d轨道中具有未成对电子的Mn,系统地调整和调控了异质结中的能带结构。ZnSe壳层有效地缓解了离子插入/脱出过程中固有的体积膨胀问题,而一维碳管导电基底避免了MnSe/ZnSe纳米颗粒的聚集。同时,异质结的引入引起亚晶格畸变和电荷重新分布,丰富了活性位点并调控了能带结构。这些异质结中的硒空位有助于提供丰富的活性位点,从而促进高效的离子插入/脱出。在钠离子电池(SIBs)中,MnSe/ZnSe@HCTs在0.1 A g下具有475 mA h g的优异容量,即使在1000次循环后仍保持408.5 mAh g的容量。在钾离子电池(KIBs)中,MnSe/ZnSe@HCTs在0.1 A g的电流密度下具有422 mAh g的更高比容量,在1000次循环后保持99%的高库仑效率。蛋黄壳结构的MnSe/ZnSe异质结展示了用于高性能钠/钾电池的优异电极性能,在未来储能应用中具有巨大潜力。