Suppr超能文献

随机临床试验中的最小化。

Minimization in randomized clinical trials.

机构信息

IDDI, Louvain-la-Neuve, Belgium.

Data Science Institute, Hasselt University, Hasselt, Belgium.

出版信息

Stat Med. 2023 Dec 10;42(28):5285-5311. doi: 10.1002/sim.9916. Epub 2023 Oct 23.

Abstract

In randomized trials, comparability of the treatment groups is ensured through allocation of treatments using a mechanism that involves some random element, thus controlling for confounding of the treatment effect. Completely random allocation ensures comparability between the treatment groups for all known and unknown prognostic factors. For a specific trial, however, imbalances in prognostic factors among the treatment groups may occur. Although accidental bias can be avoided in the presence of such imbalances by stratifying the analysis, most trialists, regulatory agencies, and other stakeholders prefer a balanced distribution of prognostic factors across the treatment groups. Some procedures attempt to achieve balance in baseline covariates, by stratifying the allocation for these covariates, or by dynamically adapting the allocation using covariate information during the trial (covariate-adaptive procedures). In this Tutorial, the performance of minimization, a popular covariate-adaptive procedure, is compared with two other commonly used procedures, completely random allocation and stratified blocked designs. Using individual patient data of 2 clinical trials (in advanced ovarian cancer and age-related macular degeneration), the procedures are compared in terms of operating characteristics (using asymptotic and randomization tests), predictability of treatment allocation, and achieved balance. Fifty actual trials of various sizes that applied minimization for treatment allocation are used to investigate the achieved balance. Implementation issues of minimization are described. Minimization procedures are useful in all trials but especially when (1) many major prognostic factors are known, (2) many centers of different sizes accrue patients, or (3) the trial sample size is moderate.

摘要

在随机试验中,通过使用涉及随机元素的机制来分配治疗方法,可以确保治疗组的可比性,从而控制治疗效果的混杂。完全随机分配可确保治疗组之间在所有已知和未知的预后因素方面具有可比性。然而,对于特定的试验,治疗组之间的预后因素可能存在不平衡。尽管在存在这种不平衡的情况下,可以通过分层分析避免偶然的偏差,但大多数试验人员、监管机构和其他利益相关者都希望治疗组之间预后因素的分布均衡。一些程序试图通过分层分配这些协变量,或在试验过程中使用协变量信息动态调整分配来实现基线协变量的平衡(协变量自适应程序)。在本教程中,将比较最小化作为一种流行的协变量自适应程序,与两种其他常用的程序,即完全随机分配和分层区组设计的性能。使用来自 2 项临床试验(晚期卵巢癌和年龄相关性黄斑变性)的个体患者数据,从操作特征(使用渐近和随机化检验)、治疗分配的可预测性和实现的平衡方面比较这些程序。使用了 50 项实际应用最小化进行治疗分配的各种规模的试验,以研究实现的平衡。描述了最小化程序的实施问题。最小化程序在所有试验中都很有用,但尤其适用于以下情况:(1)已知许多主要预后因素,(2)许多不同规模的中心积累患者,或(3)试验样本量适中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验