Suppr超能文献

结合深度学习与分子建模技术对泰国蘑菇数据库中新型mTOR抑制剂进行虚拟筛选

Combined Deep Learning and Molecular Modeling Techniques on the Virtual Screening of New mTOR Inhibitors from the Thai Mushroom Database.

作者信息

Posansee Kewalin, Liangruksa Monrudee, Termsaithong Teerasit, Saparpakorn Patchreenart, Hannongbua Supa, Laomettachit Teeraphan, Sutthibutpong Thana

机构信息

Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand.

National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.

出版信息

ACS Omega. 2023 Oct 2;8(41):38373-38385. doi: 10.1021/acsomega.3c04827. eCollection 2023 Oct 17.

Abstract

The mammalian target of rapamycin (mTOR) is a protein kinase of the PI3K/Akt signaling pathway that regulates cell growth and division and is an attractive target for cancer therapy. Many reports on finding alternative mTOR inhibitors available in a database contain a mixture of active compound data with different mechanisms, which results in an increased complexity for training the machine learning models based on the chemical features of active compounds. In this study, a deep learning model supported by principal component analysis (PCA) and structural methods was used to search for an alternative mTOR inhibitor from mushrooms. The mTORC1 active compound data set from the PubChem database was first filtered for only the compounds resided near the first-generation inhibitors (rapalogs) within the first two PCA coordinates of chemical features. A deep learning model trained by the filtered data set captured the main characteristics of rapalogs and displayed the importance of steroid cores. After that, another layer of virtual screening by molecular docking calculations was performed on ternary complexes of FKBP12-FRB domains and six compound candidates with high "active" probability scores predicted by the deep learning models. Finally, all-atom molecular dynamics simulations and MMPBSA binding energy analysis were performed on two selected candidates in comparison to rapamycin, which confirmed the importance of ring groups and steroid cores for interaction networks. Trihydroxysterol from Lev. was predicted as an interesting candidate due to the small but effective interaction network that facilitated FKBP12-FRB interactions and further stabilized the ternary complex.

摘要

雷帕霉素的哺乳动物靶点(mTOR)是PI3K/Akt信号通路中的一种蛋白激酶,可调节细胞生长和分裂,是癌症治疗中一个有吸引力的靶点。许多关于在数据库中寻找替代mTOR抑制剂的报告包含了具有不同作用机制的活性化合物数据的混合物,这使得基于活性化合物化学特征训练机器学习模型的复杂性增加。在本研究中,使用了一种由主成分分析(PCA)和结构方法支持的深度学习模型,从蘑菇中寻找替代mTOR抑制剂。首先对来自PubChem数据库的mTORC1活性化合物数据集进行筛选,只保留在化学特征的前两个PCA坐标内位于第一代抑制剂(雷帕霉素类似物)附近的化合物。由筛选后的数据集训练的深度学习模型捕捉到了雷帕霉素类似物的主要特征,并显示了甾体核心的重要性。之后,对FKBP12 - FRB结构域的三元复合物以及深度学习模型预测的具有高“活性”概率分数的六个化合物候选物进行了另一层分子对接计算的虚拟筛选。最后,与雷帕霉素相比,对两个选定的候选物进行了全原子分子动力学模拟和MMPBSA结合能分析,这证实了环基团和甾体核心对相互作用网络的重要性。由于其促进FKBP12 - FRB相互作用并进一步稳定三元复合物的小而有效的相互作用网络,来自Lev.的三羟基甾醇被预测为一个有趣的候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceb6/10586184/4d5149569af0/ao3c04827_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验