Suppr超能文献

在国家医疗保险理赔数据库中用于识别ST段抬高型和非ST段抬高型心肌梗死患者的ICD-10-CM诊断代码的验证

Validation of ICD-10-CM Diagnostic Codes for Identifying Patients with ST-Elevation and Non-ST-Elevation Myocardial Infarction in a National Health Insurance Claims Database.

作者信息

Tsai Tou-Yuan, Lin Jen-Feng, Tu Yu-Kang, Lee Jian-Heng, Hsiao Yu-Ting, Sung Sheng-Feng, Tsai Ming-Jen

机构信息

Department of Emergency Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.

School of Medicine, Tzu Chi University, Hualien, Taiwan.

出版信息

Clin Epidemiol. 2023 Oct 17;15:1027-1039. doi: 10.2147/CLEP.S431231. eCollection 2023.

Abstract

PURPOSE

Distinguishing ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI) is crucial in acute myocardial infarction (AMI) research due to their distinct characteristics. However, the accuracy of International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes for STEMI and NSTEMI in Taiwan's National Health Insurance (NHI) database remains unvalidated. Therefore, we developed and validated case definition algorithms for STEMI and NSTEMI using ICD-10-CM and NHI billing codes.

PATIENTS AND METHODS

We obtained claims data and medical records of inpatient visits from 2016 to 2021 from the hospital's research-based database. Potential STEMI and NSTEMI cases were identified using diagnostic codes, keywords, and procedure codes associated with AMI. Chart reviews were then conducted to confirm the cases. The performance of the developed algorithms for STEMI and NSTEMI was assessed and subsequently externally validated.

RESULTS

The algorithm that defined STEMI as any STEMI ICD code in the first three diagnosis fields had the highest performance, with a sensitivity of 93.6% (95% confidence interval [CI], 91.7-95.2%), a positive predictive value (PPV) of 89.4% (95% CI, 87.1-91.4%), and a kappa of 0.914 (95% CI, 0.900-0.928). The algorithm that used the NSTEMI ICD code listed in any diagnosis field performed best in identifying NSTEMI, with a sensitivity of 82.6% (95% CI, 80.7-84.4%), a PPV of 96.5% (95% CI, 95.4-97.4), and a kappa of 0.889 (95% CI, 0.878-0.901). The algorithm that included either STEMI or NSTEMI ICD codes listed in any diagnosis field showed excellent performance in defining AMI, with a sensitivity of 89.4% (95% CI, 88.2-90.6%), a PPV of 95.6% (95% CI, 94.7-96.4%), and a kappa of 0.923 (95% CI, 0.915-0.931). External validation confirmed these algorithms' efficacy.

CONCLUSION

Our results provide valuable reference algorithms for identifying STEMI and NSTEMI cases in Taiwan's NHI database.

摘要

目的

区分ST段抬高型心肌梗死(STEMI)和非ST段抬高型心肌梗死(NSTEMI)在急性心肌梗死(AMI)研究中至关重要,因为它们具有不同的特征。然而,台湾国民健康保险(NHI)数据库中STEMI和NSTEMI的国际疾病分类第十次修订本临床修订版(ICD - 10 - CM)编码的准确性尚未得到验证。因此,我们使用ICD - 10 - CM和NHI计费代码开发并验证了STEMI和NSTEMI的病例定义算法。

患者和方法

我们从医院基于研究的数据库中获取了2016年至2021年住院就诊的理赔数据和病历。使用与AMI相关的诊断代码、关键词和程序代码识别潜在的STEMI和NSTEMI病例。然后进行病历审查以确认病例。对开发的STEMI和NSTEMI算法的性能进行评估,并随后进行外部验证。

结果

将STEMI定义为前三个诊断字段中的任何STEMI ICD代码的算法性能最高,灵敏度为93.6%(95%置信区间[CI],91.7 - 95.2%),阳性预测值(PPV)为89.4%(95% CI,87.1 - 91.4%),kappa值为0.914(95% CI,0.900 - 0.928)。使用任何诊断字段中列出的NSTEMI ICD代码的算法在识别NSTEMI方面表现最佳,灵敏度为82.6%(95% CI,80.7 - 84.4%),PPV为96.5%(95% CI,95.4 - 97.4),kappa值为0.889(95% CI,0.878 - 0.901)。在任何诊断字段中包含STEMI或NSTEMI ICD代码的算法在定义AMI方面表现出色,灵敏度为89.4%(95% CI,88.2 - 90.6%),PPV为95.6%(95% CI,94.7 - 96.4%),kappa值为0.923(95% CI,0.915 - 0.931)。外部验证证实了这些算法的有效性。

结论

我们的结果为在台湾NHI数据库中识别STEMI和NSTEMI病例提供了有价值的参考算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b56/10590151/95a1b14f0bba/CLEP-15-1027-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验