Viset Frida, Helmons Rudy, Kok Manon
Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands.
Maritime and Transport Technology, Delft University of Technology, 2628 CD Delft, The Netherlands.
Sensors (Basel). 2022 Apr 7;22(8):2833. doi: 10.3390/s22082833.
We present a computationally efficient algorithm for using variations in the ambient magnetic field to compensate for position drift in integrated odometry measurements (dead-reckoning estimates) through simultaneous localization and mapping (SLAM). When the magnetic field map is represented with a reduced-rank Gaussian process (GP) using Laplace basis functions defined in a cubical domain, analytic expressions of the gradient of the learned magnetic field become available. An existing approach for magnetic field SLAM with reduced-rank GP regression uses a Rao-Blackwellized particle filter (RBPF). For each incoming measurement, training of the magnetic field map using an RBPF has a computational complexity per time step of O(NpNm2), where Np is the number of particles, and Nm is the number of basis functions used to approximate the Gaussian process. Contrary to the existing particle filter-based approach, we propose applying an extended Kalman filter based on the gradients of our learned magnetic field map for simultaneous localization and mapping. Our proposed algorithm only requires training a single map. It, therefore, has a computational complexity at each time step of O(Nm2). We demonstrate the workings of the extended Kalman filter for magnetic field SLAM on an open-source data set from a foot-mounted sensor and magnetic field measurements collected onboard a model ship in an indoor pool. We observe that the drift compensating abilities of our algorithm are comparable to what has previously been demonstrated for magnetic field SLAM with an RBPF.
我们提出了一种计算效率高的算法,该算法利用环境磁场的变化,通过同时定位与地图构建(SLAM)来补偿集成里程计测量(航位推算估计)中的位置漂移。当使用在立方域中定义的拉普拉斯基函数,用降秩高斯过程(GP)来表示磁场图时,就可以得到所学习磁场梯度的解析表达式。一种现有的基于降秩GP回归的磁场SLAM方法使用了 Rao-Blackwellized 粒子滤波器(RBPF)。对于每次传入的测量,使用RBPF对磁场图进行训练,每个时间步的计算复杂度为O(NpNm2),其中Np是粒子数,Nm是用于近似高斯过程的基函数数。与现有的基于粒子滤波器的方法不同,我们提出基于所学习磁场图的梯度应用扩展卡尔曼滤波器来进行同时定位与地图构建。我们提出的算法只需要训练单个地图。因此,它在每个时间步的计算复杂度为O(Nm2)。我们在一个来自足部安装传感器的开源数据集以及在室内水池中的模型船上收集的磁场测量数据上,展示了用于磁场SLAM的扩展卡尔曼滤波器的工作情况。我们观察到,我们算法的漂移补偿能力与之前使用RBPF进行磁场SLAM所展示的能力相当。