Suppr超能文献

自杀预防的模拟模型:最新技术综述

Simulation Models for Suicide Prevention: A Survey of the State-of-the-Art.

作者信息

Schuerkamp Ryan, Liang Luke, Rice Ketra L, Giabbanelli Philippe J

机构信息

Department of Computer Science & Software Engineering, Miami University, Oxford, OH 45056, USA.

National Center for Injury Prevention and Control, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30341, USA.

出版信息

Computers (Basel). 2023 Jun;12(7). doi: 10.3390/computers12070132.

Abstract

Suicide is a leading cause of death and a global public health problem, representing more than one in every 100 deaths in 2019. Modeling and Simulation (M&S) is widely used to address public health problems, and numerous simulation models have investigated the complex, dependent, and dynamic risk factors contributing to suicide. However, no review has been dedicated to these models, which prevents modelers from effectively learning from each other and raises the risk of redundant efforts. To guide the development of future models, in this paper we perform the first scoping review of simulation models for suicide prevention. Examining ten articles, we focus on three practical questions. First, which interventions are supported by previous models? We found that four groups of models collectively support 53 interventions. We examined these interventions through the lens of global recommendations for suicide prevention, highlighting future areas for model development. Second, what are the obstacles preventing model application? We noted the absence of cost effectiveness in all models reviewed, meaning that certain simulated interventions may be infeasible. Moreover, we found that most models do not account for different effects of suicide prevention interventions across demographic groups. Third, how much confidence can we place in the models? We evaluated models according to four best practices for simulation, leading to nuanced findings that, despite their current limitations, the current simulation models are powerful tools for understanding the complexity of suicide and evaluating suicide prevention interventions.

摘要

自杀是主要的死亡原因之一,也是一个全球公共卫生问题,在2019年每100例死亡中就占一例以上。建模与仿真(M&S)被广泛用于解决公共卫生问题,众多仿真模型已对导致自杀的复杂、相关且动态的风险因素进行了研究。然而,尚未有针对这些模型的综述,这阻碍了建模人员相互有效学习,并增加了重复劳动的风险。为指导未来模型的开发,本文我们对预防自杀的仿真模型进行了首次范围综述。通过审查十篇文章,我们关注三个实际问题。第一,先前的模型支持哪些干预措施?我们发现四组模型共同支持53种干预措施。我们从全球预防自杀建议的角度审视了这些干预措施,突出了模型开发的未来方向。第二,阻碍模型应用的障碍有哪些?我们注意到在所审查的所有模型中都缺乏成本效益,这意味着某些模拟干预措施可能不可行。此外,我们发现大多数模型没有考虑到预防自杀干预措施在不同人口群体中的不同效果。第三,我们对这些模型有多大信心?我们根据仿真的四项最佳实践对模型进行了评估,得出了细致入微的结果,即尽管当前存在局限性,但当前的仿真模型仍是理解自杀复杂性和评估预防自杀干预措施的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a73/10588059/e06865897b20/nihms-1935872-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验