Suppr超能文献

具有热增强热传输的深度学习辅助有源超材料

Deep Learning-Assisted Active Metamaterials with Heat-Enhanced Thermal Transport.

作者信息

Jin Peng, Xu Liujun, Xu Guoqiang, Li Jiaxin, Qiu Cheng-Wei, Huang Jiping

机构信息

Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, 200438, China.

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.

出版信息

Adv Mater. 2024 Feb;36(5):e2305791. doi: 10.1002/adma.202305791. Epub 2023 Nov 30.

Abstract

Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working-temperature ranges, and the need for manual intervention, which remain long-term and tricky obstacles for the most advanced self-adaptive metamaterials. To surmount these barriers, heat-enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on-demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.

摘要

热管理对于诸如被动辐射冷却、热可调可穿戴设备和伪装系统等先进应用至关重要。它们的自适应版本为满足各种需求,依赖于自适应超材料的潜力。然而,现有的成果具有高度各向异性的参数、狭窄的工作温度范围以及需要人工干预等特点,这对于最先进的自适应超材料来说仍然是长期且棘手的障碍。为了克服这些障碍,引入了由深度学习驱动的热增强热扩散超材料。这种有源超材料能够自动感知环境温度,并以高度的可调性迅速且持续地调整其热功能。即使外部热场改变方向,它们也能保持强大的热性能,模拟和实验均展示了出色的结果。此外,还设计了两种具有按需适应性的超器件,它们采用各向同性材料、宽工作温度范围和自发响应来实现独特功能。这项工作为智能热扩散超材料的设计提供了一个框架,并且可以扩展到其他扩散领域,以适应日益复杂和动态的环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验