Zhu Changliang, Bamidele Emmanuel Anuoluwa, Shen Xiangying, Zhu Guimei, Li Baowen
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China.
Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States.
Chem Rev. 2024 Apr 10;124(7):4258-4331. doi: 10.1021/acs.chemrev.3c00708. Epub 2024 Mar 28.
Artificial Intelligence (AI) has advanced material research that were previously intractable, for example, the machine learning (ML) has been able to predict some unprecedented thermal properties. In this review, we first elucidate the methodologies underpinning discriminative and generative models, as well as the paradigm of optimization approaches. Then, we present a series of case studies showcasing the application of machine learning in thermal metamaterial design. Finally, we give a brief discussion on the challenges and opportunities in this fast developing field. In particular, this review provides: (1) Optimization of thermal metamaterials using optimization algorithms to achieve specific target properties. (2) Integration of discriminative models with optimization algorithms to enhance computational efficiency. (3) Generative models for the structural design and optimization of thermal metamaterials.
人工智能(AI)推动了以前难以处理的材料研究,例如,机器学习(ML)已经能够预测一些前所未有的热性能。在本综述中,我们首先阐明了支持判别模型和生成模型的方法,以及优化方法的范式。然后,我们展示了一系列案例研究,展示了机器学习在热超材料设计中的应用。最后,我们简要讨论了这个快速发展领域中的挑战和机遇。特别是,本综述提供了:(1)使用优化算法优化热超材料以实现特定的目标性能。(2)将判别模型与优化算法相结合以提高计算效率。(3)用于热超材料结构设计和优化的生成模型。