Allgemeine Genetik, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Eberhard-Karls-Universität Tübingen, Tübingen, Germany.
Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China.
Plant Biotechnol J. 2024 Mar;22(3):602-616. doi: 10.1111/pbi.14208. Epub 2023 Oct 23.
Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator-like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17-nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11-EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11-EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC-dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL-binding motif Brg11-EBE mediates RipTAL-dependent transcription of the executor-type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL-delivering R. solanacearum strains. Our results suggest that cell death-inducing executor-type R genes, preceded by the RipTAL-binding motif Brg11-EBE, could be used to genetically engineer broad-spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.
青枯雷尔氏菌是一种引起细菌性萎蔫病的细菌植物病原体,由四个菌系组成,这些菌系是在 1.8 亿年前大陆漂移时由一个创始种群分裂形成的。每个菌系都含有与细菌病原体黄单胞菌的转录激活子样(TAL)效应物结构相关的 RipTAL 蛋白。RipTAL 在地理上分离的菌系中进化,因此在序列和潜在功能上存在差异。早期的研究表明,菌系 I 的 RipTAL Brg11 靶向一个 17 个核苷酸的效应物结合元件(EBE),并转录激活下游的精氨酸脱羧酶(ADC)基因。Brg11 和其他菌系的 RipTAL 的预测 DNA 结合偏好性相似,这表明大多数(如果不是全部)RipTAL 都靶向 Brg11-EBE 基序并激活下游的 ADC 基因。在这里,我们不仅证明了菌系 I 的 RipTAL Brg11,而且还证明了其他菌系的 RipTAL 在 Brg11-EBE 基序之前也能激活宿主基因。此外,我们还证明了 Brg11 和其他菌系的 RipTAL 诱导相同数量的 ADC 依赖性植物代谢物的变化,这表明大多数(如果不是全部)RipTAL 诱导宿主细胞产生功能上等效的变化。最后,我们报告了转烟草株系,其中 RipTAL 结合基序 Brg11-EBE 介导来自辣椒的执行型抗性(R)基因 Bs4C 的 RipTAL 依赖性转录,从而赋予对携带 RipTAL 的 R. solanacearum 菌株的抗性。我们的结果表明,在 RipTAL 结合基序 Brg11-EBE 之前的诱导细胞死亡的执行型 R 基因可用于遗传工程作物植物中的广谱细菌性萎蔫病抗性,而不会带来明显的适应性代价。