Suppr超能文献

OW-Adapter: Human-Assisted Open-World Object Detection with a Few Examples.

作者信息

Jamonnak Suphanut, Guo Jiajing, He Wenbin, Gou Liang, Ren Liu

出版信息

IEEE Trans Vis Comput Graph. 2024 Jan;30(1):694-704. doi: 10.1109/TVCG.2023.3326577. Epub 2023 Dec 25.

Abstract

Open-world object detection (OWOD) is an emerging computer vision problem that involves not only the identification of predefined object classes, like what general object detectors do, but also detects new unknown objects simultaneously. Recently, several end-to-end deep learning models have been proposed to address the OWOD problem. However, these approaches face several challenges: a) significant changes in both network architecture and training procedure are required; b) they are trained from scratch, which can not leverage existing pre-trained general detectors; c) costly annotations for all unknown classes are needed. To overcome these challenges, we present a visual analytic framework called OW-Adapter. It acts as an adaptor to enable pre-trained general object detectors to handle the OWOD problem. Specifically, OW-Adapter is designed to identify, summarize, and annotate unknown examples with minimal human effort. Moreover, we introduce a lightweight classifier to learn newly annotated unknown classes and plug the classifier into pre-trained general detectors to detect unknown objects. We demonstrate the effectiveness of our framework through two case studies of different domains, including common object recognition and autonomous driving. The studies show that a simple yet powerful adaptor can extend the capability of pre-trained general detectors to detect unknown objects and improve the performance on known classes simultaneously.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验