Mujkic Esma, Christiansen Martin P, Ravn Ole
Automation and Control Group, Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
AGCO A/S, 8930 Randers, Denmark.
Sensors (Basel). 2023 Aug 20;23(16):7285. doi: 10.3390/s23167285.
Vision-based object detection is essential for safe and efficient field operation for autonomous agricultural vehicles. However, one of the challenges in transferring state-of-the-art object detectors to the agricultural domain is the limited availability of labeled datasets. This paper seeks to address this challenge by utilizing two object detection models based on YOLOv5, one pre-trained on a large-scale dataset for detecting general classes of objects and one trained to detect a smaller number of agriculture-specific classes. To combine the detections of the models at inference, we propose an ensemble module based on a hierarchical structure of classes. Results show that applying the proposed ensemble module increases mAP@.5 from 0.575 to 0.65 on the test dataset and reduces the misclassification of similar classes detected by different models. Furthermore, by translating detections from base classes to a higher level in the class hierarchy, we can increase the overall mAP@.5 to 0.701 at the cost of reducing class granularity.
基于视觉的目标检测对于自动驾驶农业车辆的安全高效田间作业至关重要。然而,将先进的目标检测器应用于农业领域面临的挑战之一是标注数据集的可用性有限。本文旨在通过利用基于YOLOv5的两个目标检测模型来应对这一挑战,一个在大规模数据集上预训练以检测一般类别的目标,另一个则训练用于检测较少数量的农业特定类别。为了在推理时合并模型的检测结果,我们提出了一个基于类别的层次结构的集成模块。结果表明,应用所提出的集成模块可使测试数据集上的mAP@.5从0.575提高到0.65,并减少不同模型检测到的相似类别的误分类。此外,通过将基础类别的检测结果转换到类层次结构中的更高层级,我们可以以降低类粒度为代价将整体mAP@.5提高到0.701。