Suppr超能文献

香港的医疗大数据:用于风险分层的人工智能增强预测模型的开发与实施

Healthcare Big Data in Hong Kong: Development and Implementation of Artificial Intelligence-Enhanced Predictive Models for Risk Stratification.

作者信息

Tse Gary, Lee Quinncy, Chou Oscar Hou In, Chung Cheuk To, Lee Sharen, Chan Jeffrey Shi Kai, Li Guoliang, Kaur Narinder, Roever Leonardo, Liu Haipeng, Liu Tong, Zhou Jiandong

机构信息

School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China; Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.

Family Medicine Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China.

出版信息

Curr Probl Cardiol. 2024 Jan;49(1 Pt B):102168. doi: 10.1016/j.cpcardiol.2023.102168. Epub 2023 Oct 21.

Abstract

Routinely collected electronic health records (EHRs) data contain a vast amount of valuable information for conducting epidemiological studies. With the right tools, we can gain insights into disease processes and development, identify the best treatment and develop accurate models for predicting outcomes. Our recent systematic review has found that the number of big data studies from Hong Kong has rapidly increased since 2015, with an increasingly common application of artificial intelligence (AI). The advantages of big data are that i) the models developed are highly generalisable to the population, ii) multiple outcomes can be determined simultaneously, iii) ease of cross-validation by for model training, development and calibration, iv) huge numbers of useful variables can be analyzed, v) static and dynamic variables can be analyzed, vi) non-linear and latent interactions between variables can be captured, vii) artificial intelligence approaches can enhance the performance of prediction models. In this paper, we will provide several examples (cardiovascular disease, diabetes mellitus, Brugada syndrome, long QT syndrome) to illustrate efforts from a multi-disciplinary team to identify data from different modalities to develop models using territory-wide datasets, with the possibility of real-time risk updates by using new data captured from patients. The benefit is that only routinely collected data are required for developing highly accurate and high-performance models. AI-driven models outperform traditional models in terms of sensitivity, specificity, accuracy, area under the receiver operating characteristic and precision-recall curve, and F1 score. Web and/or mobile versions of the risk models allow clinicians to risk stratify patients quickly in clinical settings, thereby enabling clinical decision-making. Efforts are required to identify the best ways of implementing AI algorithms on the web and mobile apps.

摘要

常规收集的电子健康记录(EHR)数据包含大量用于开展流行病学研究的宝贵信息。借助合适的工具,我们能够深入了解疾病过程与发展,确定最佳治疗方法,并开发用于预测结果的精确模型。我们最近的系统评价发现,自2015年以来,来自香港的大数据研究数量迅速增加,人工智能(AI)的应用也越来越普遍。大数据的优势在于:i)所开发的模型对总体具有高度可推广性;ii)可同时确定多个结果;iii)便于通过交叉验证进行模型训练、开发和校准;iv)可分析大量有用变量;v)可分析静态和动态变量;vi)可捕捉变量之间的非线性和潜在相互作用;vii)人工智能方法可提高预测模型的性能。在本文中,我们将提供几个例子(心血管疾病、糖尿病、 Brugada综合征、长QT综合征)来说明一个多学科团队如何努力从不同模式中识别数据,利用全港数据集开发模型,并有可能通过使用从患者收集的新数据进行实时风险更新。其好处是,开发高度准确和高性能的模型仅需常规收集的数据。在敏感性、特异性、准确性、受试者操作特征曲线下面积以及精确召回曲线和F1分数方面,人工智能驱动的模型优于传统模型。风险模型的网络和/或移动版本使临床医生能够在临床环境中快速对患者进行风险分层,从而实现临床决策。需要努力确定在网络和移动应用程序上实施人工智能算法的最佳方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验