Lee Sharen, Liu Tong, Chung Cheuk To, Reinhold Johannes, Vassiliou Vassilios S, Tse Gary
Diabetes Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China.
Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
NPJ Metab Health Dis. 2024 Jul 1;2(1):14. doi: 10.1038/s44324-024-00012-7.
The aim of this study is to review the predictive value of visit-to-visit variability in glycaemic or lipid tests for forecasting major adverse cardiovascular events (MACE) in diabetes mellitus. Data from existing studies suggests that such variability is an independent predictor of adverse outcomes in this patient cohort. This understanding is then applied to the development of PowerAI-Diabetes, a Chinese-specific artificial intelligence-enhanced predictive model for predicting the risks of major adverse cardiovascular events and diabetic complications. The model integrates an amalgam of variables including demographics, laboratory and medication information to assess the risk of MACE. Future efforts should focus on the incorporation of treatment effects and non-traditional cardiovascular risk factors, such as social determinants of health variables, to improve the performance of predictive models.
本研究的目的是回顾血糖或血脂检测中逐次就诊变异性对预测糖尿病患者主要不良心血管事件(MACE)的价值。现有研究数据表明,这种变异性是该患者群体不良结局的独立预测因素。基于这一认识,开发了PowerAI-糖尿病模型,这是一个针对中国人群的人工智能增强预测模型,用于预测主要不良心血管事件和糖尿病并发症的风险。该模型整合了包括人口统计学、实验室检查和用药信息等多种变量,以评估发生MACE的风险。未来的工作应侧重于纳入治疗效果和非传统心血管危险因素,如健康变量的社会决定因素,以提高预测模型的性能。