Pan Zhen-Cun, Li Dong, Ye Xing-Guo, Chen Zheng, Chen Zhao-Hui, Wang An-Qi, Tian Mingliang, Yao Guangjie, Liu Kaihui, Liao Zhi-Min
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Sci Bull (Beijing). 2023 Nov 30;68(22):2743-2749. doi: 10.1016/j.scib.2023.10.008. Epub 2023 Oct 13.
The non-volatile magnetoresistive random access memory (MRAM) is believed to facilitate emerging applications, such as in-memory computing, neuromorphic computing and stochastic computing. Two-dimensional (2D) materials and their van der Waals heterostructures promote the development of MRAM technology, due to their atomically smooth interfaces and tunable physical properties. Here we report the all-2D magnetoresistive memories featuring all-electrical data reading and writing at room temperature based on WTe/FeGaTe/BN/FeGaTe heterostructures. The data reading process relies on the tunnel magnetoresistance of FeGaTe/BN/FeGaTe. The data writing is achieved through current induced polarization of orbital magnetic moments in WTe, which exert torques on FeGaTe, known as the orbit-transfer torque (OTT) effect. In contrast to the conventional reliance on spin moments in spin-transfer torque and spin-orbit torque, the OTT effect leverages the natural out-of-plane orbital moments, facilitating field-free perpendicular magnetization switching through interface currents. Our results indicate that the emerging OTT-MRAM is promising for low-power, high-performance memory applications.
非易失性磁阻随机存取存储器(MRAM)被认为有助于新兴应用,如内存计算、神经形态计算和随机计算。二维(2D)材料及其范德华异质结构因其原子级光滑的界面和可调节的物理特性,推动了MRAM技术的发展。在此,我们报告了基于WTe/FeGaTe/BN/FeGaTe异质结构的全二维磁阻存储器,其在室温下具有全电数据读写功能。数据读取过程依赖于FeGaTe/BN/FeGaTe的隧道磁阻。数据写入是通过WTe中电流诱导的轨道磁矩极化来实现的,该极化对FeGaTe施加扭矩,即所谓的轨道转移扭矩(OTT)效应。与传统的依赖自旋转移扭矩和自旋轨道扭矩中的自旋矩不同,OTT效应利用了自然的面外轨道矩,通过界面电流促进无场垂直磁化切换。我们的结果表明,新兴的OTT-MRAM在低功耗、高性能存储应用方面具有潜力。