Zhang Yiyang, Ren Xiaolin, Liu Ruizi, Chen Zehan, Wu Xuezhao, Pang Jie, Wang Wei, Lan Guibin, Watanabe Kenji, Taniguchi Takashi, Shi Youguo, Yu Guoqiang, Shao Qiming
Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China.
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China.
Adv Mater. 2024 Oct;36(41):e2406464. doi: 10.1002/adma.202406464. Epub 2024 Aug 14.
The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in all-vdW heterostructures, large unconventional SOT remains elusive and the robustness of the field-free switching against external magnetic field has not been examined, which hinders further applications. Here, the study demonstrates the field-free switching in an all-vdW heterostructure combining a type-II Weyl semimetal TaIrTe and above-room-temperature ferromagnet FeGaTe. The fully field-free switching can be achieved at 2.56 × 10 A m at 300 K and a large SOT effective field efficiency of the out-of-plane polarized spin current generated by TaIrTe is determined to be 0.37. Moreover, it is found that the switching polarity cannot be changed until the external in-plane magnetic field reaches 252 mT, indicating a robust switching against the magnetic field. The numerical simulation suggests the large unconventional SOT reduces the switching current density and enhances the robustness of the switching. The work shows that all-vdW heterostructures are promising candidates for future highly efficient and stable SOT-based devices.
新兴的全范德华(vdW)磁性异质结构提供了一个新平台,可通过电场控制磁化,这超越了传统的自旋电子学器件。一种有前景的策略是利用由面外极化自旋电流施加的非常规自旋轨道矩(SOT)来实现确定性的磁化翻转并提高翻转效率。然而,在全vdW异质结构中,大的非常规SOT仍然难以捉摸,并且无磁场翻转对外部磁场的鲁棒性尚未得到研究,这阻碍了进一步的应用。在此,该研究展示了在一种结合了II型外尔半金属TaIrTe和室温以上铁磁体FeGaTe的全vdW异质结构中的无磁场翻转。在300 K时,在2.56×10 A/m下可实现完全无磁场翻转,并且由TaIrTe产生的面外极化自旋电流的大SOT有效场效率被确定为0.37。此外,发现直到外部面内磁场达到252 mT时,翻转极性才会改变,这表明对磁场具有鲁棒的翻转。数值模拟表明,大的非常规SOT降低了翻转电流密度并增强了翻转的鲁棒性。这项工作表明,全vdW异质结构是未来基于SOT的高效稳定器件的有前景的候选材料。