Zhang Delin, Wei Heshuang, Duan Jinyu, Chen Jiali, Chen Jiaxin, Yue Dongdong, Gong Wanxi, Liu Pengfei, Yang Yuhe, Gou Jinlong, Yan Junxin, Zhai Kun, Wang Ping, Hu Shuai, Jia Zhiyan, Jiang Wei, Liu Liang, Wang Wenhong, Li Yue, Jiang Yong
Institute of Quantum Materials and Devices; School of Electronics and Information Engineering, Tiangong University, Tianjin, China.
School of Material Science and Engineering; State Key Laboratory of Advanced Separation Membrane Materials, Tiangong University, Tianjin, China.
Nat Commun. 2025 Jul 31;16(1):7047. doi: 10.1038/s41467-025-62333-5.
Efficiently manipulating the magnetization of van der Waals (vdW) ferromagnets has attracted considerable interest in developing room-temperature two-dimensional (2D) material-based memory and logic devices. Here, taking advantage of the unique properties of the vdW ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switching of vdW ferromagnet FeGaTe through the orbital torque generated by the orbital Hall material, Titanium (Ti). The switching current density is estimated to be around 1.6×10A/cm, comparable to that achieved in FeGaTe using spin-orbit torque from spin Hall materials (e.g., WTe, and TaIrTe). The efficient magnetization switching arises from the combined effects of the large orbital Hall conductivity of Ti and the strong spin-orbit correlation of the FeGaTe, as confirmed through theoretical calculations. Our findings advance the understanding of orbital torque switching and pave the way for exploring 2D material-based orbitronic devices.
有效操控范德华(vdW)铁磁体的磁化强度,在开发基于室温二维(2D)材料的存储器和逻辑器件方面引起了相当大的兴趣。在此,利用vdW铁磁体的独特性质以及轨道霍尔效应的良好特性,我们通过轨道霍尔材料钛(Ti)产生的轨道扭矩,展示了vdW铁磁体FeGaTe在室温下的磁化翻转。估计开关电流密度约为1.6×10A/cm,与使用自旋霍尔材料(如WTe和TaIrTe)的自旋轨道扭矩在FeGaTe中实现的电流密度相当。理论计算证实,高效的磁化翻转源于Ti的大轨道霍尔电导率和FeGaTe的强自旋轨道相关性的综合作用。我们的发现增进了对轨道扭矩翻转的理解,并为探索基于二维材料的轨道电子器件铺平了道路。