Suppr超能文献

利用血管内光学相干断层成像图像上的机器学习预测钙化冠状动脉中的支架扩张不足。

Prediction of stent under-expansion in calcified coronary arteries using machine learning on intravascular optical coherence tomography images.

机构信息

Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa, Jordan.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.

出版信息

Sci Rep. 2023 Oct 23;13(1):18110. doi: 10.1038/s41598-023-44610-9.

Abstract

It can be difficult/impossible to fully expand a coronary artery stent in a heavily calcified coronary artery lesion. Under-expanded stents are linked to later complications. Here we used machine/deep learning to analyze calcifications in pre-stent intravascular optical coherence tomography (IVOCT) images and predicted the success of vessel expansion. Pre- and post-stent IVOCT image data were obtained from 110 coronary lesions. Lumen and calcifications in pre-stent images were segmented using deep learning, and lesion features were extracted. We analyzed stent expansion along the lesion, enabling frame, segmental, and whole-lesion analyses. We trained regression models to predict the post-stent lumen area and then computed the stent expansion index (SEI). Best performance (root-mean-square-error = 0.04 ± 0.02 mm, r = 0.94 ± 0.04, p < 0.0001) was achieved when we used features from both lumen and calcification to train a Gaussian regression model for segmental analysis of 31 frames in length. Stents with minimum SEI > 80% were classified as "well-expanded;" others were "under-expanded." Under-expansion classification results (e.g., AUC = 0.85 ± 0.02) were significantly improved over a previous, simple calculation, as well as other machine learning solutions. Promising results suggest that such methods can identify lesions at risk of under-expansion that would be candidates for intervention lesion preparation (e.g., atherectomy).

摘要

在严重钙化的冠状动脉病变中,完全扩张冠状动脉支架可能很困难/不可能。支架未充分扩张与后期并发症有关。在这里,我们使用机器学习/深度学习来分析支架置入前血管内光学相干断层扫描(IVOCT)图像中的钙化,并预测血管扩张的成功。从 110 个冠状动脉病变中获得了支架置入前和支架置入后的 IVOCT 图像数据。使用深度学习对支架置入前图像中的管腔和钙化进行分割,并提取病变特征。我们分析了支架沿病变的扩张情况,实现了帧、节段和全病变分析。我们训练回归模型来预测支架置入后的管腔面积,然后计算支架扩张指数(SEI)。当我们使用来自管腔和钙化的特征来训练一个高斯回归模型来分析 31 个帧的节段时,实现了最佳性能(均方根误差=0.04±0.02 mm,r=0.94±0.04,p<0.0001)。将最小 SEI>80%的支架分类为“充分扩张”,其他的支架则为“未充分扩张”。与以前的简单计算以及其他机器学习解决方案相比,未充分扩张的分类结果(例如 AUC=0.85±0.02)显著提高。有前途的结果表明,这些方法可以识别有未充分扩张风险的病变,这些病变可能是介入病变准备(例如旋磨术)的候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57da/10593923/0c5ab82559e2/41598_2023_44610_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验