Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
Sci Rep. 2024 Feb 22;14(1):4393. doi: 10.1038/s41598-024-55120-7.
Thin-cap fibroatheroma (TCFA) is a prominent risk factor for plaque rupture. Intravascular optical coherence tomography (IVOCT) enables identification of fibrous cap (FC), measurement of FC thicknesses, and assessment of plaque vulnerability. We developed a fully-automated deep learning method for FC segmentation. This study included 32,531 images across 227 pullbacks from two registries (TRANSFORM-OCT and UHCMC). Images were semi-automatically labeled using our OCTOPUS with expert editing using established guidelines. We employed preprocessing including guidewire shadow detection, lumen segmentation, pixel-shifting, and Gaussian filtering on raw IVOCT (r,θ) images. Data were augmented in a natural way by changing θ in spiral acquisitions and by changing intensity and noise values. We used a modified SegResNet and comparison networks to segment FCs. We employed transfer learning from our existing much larger, fully-labeled calcification IVOCT dataset to reduce deep-learning training. Postprocessing with a morphological operation enhanced segmentation performance. Overall, our method consistently delivered better FC segmentation results (Dice: 0.837 ± 0.012) than other deep-learning methods. Transfer learning reduced training time by 84% and reduced the need for more training samples. Our method showed a high level of generalizability, evidenced by highly-consistent segmentations across five-fold cross-validation (sensitivity: 85.0 ± 0.3%, Dice: 0.846 ± 0.011) and the held-out test (sensitivity: 84.9%, Dice: 0.816) sets. In addition, we found excellent agreement of FC thickness with ground truth (2.95 ± 20.73 µm), giving clinically insignificant bias. There was excellent reproducibility in pre- and post-stenting pullbacks (average FC angle: 200.9 ± 128.0°/202.0 ± 121.1°). Our fully automated, deep-learning FC segmentation method demonstrated excellent performance, generalizability, and reproducibility on multi-center datasets. It will be useful for multiple research purposes and potentially for planning stent deployments that avoid placing a stent edge over an FC.
薄帽纤维粥样瘤(TCFA)是斑块破裂的一个突出危险因素。血管内光学相干断层扫描(IVOCT)能够识别纤维帽(FC),测量 FC 厚度,并评估斑块易损性。我们开发了一种用于 FC 分割的全自动深度学习方法。这项研究包括来自两个注册研究(TRANSFORM-OCT 和 UHCMC)的 227 个回拉中的 32531 张图像。使用我们的 OCTOPUS 半自动标记图像,使用既定指南进行专家编辑。我们对原始 IVOCT(r,θ)图像进行预处理,包括导丝阴影检测、管腔分割、像素移位和高斯滤波。通过改变螺旋采集的θ和改变强度和噪声值,以自然的方式对数据进行扩充。我们使用修改后的 SegResNet 和比较网络来分割 FC。我们使用从现有的更大、完全标记的钙化 IVOCT 数据集进行的迁移学习来减少深度学习训练。通过形态学操作进行后处理,提高了分割性能。总的来说,我们的方法在 FC 分割结果上始终优于其他深度学习方法(Dice:0.837±0.012)。迁移学习减少了 84%的训练时间,并减少了对更多训练样本的需求。我们的方法具有高度的泛化能力,这一点在五重交叉验证(灵敏度:85.0±0.3%,Dice:0.846±0.011)和保留测试(灵敏度:84.9%,Dice:0.816)中得到了证明。此外,我们发现 FC 厚度与真实值具有极好的一致性(2.95±20.73μm),具有临床意义的偏差。在支架置入前后的回拉中具有极好的可重复性(平均 FC 角度:200.9±128.0°/202.0±121.1°)。我们的全自动深度学习 FC 分割方法在多中心数据集上表现出优异的性能、泛化能力和可重复性。它将对多个研究目的有用,并且可能有助于规划避免将支架边缘置于 FC 上的支架部署。