Suppr超能文献

深度学习辅助超声心动图左心参数测量:改善观察者间变异性和工作流程效率。

Deep learning assisted measurement of echocardiographic left heart parameters: improvement in interobserver variability and workflow efficiency.

机构信息

University of Chicago Medicine, 5758 S. Maryland Ave., MC 9067, DCAM 5509, Chicago, IL, 60637, USA.

TOMTEC Imaging Systems, Unterschleissheim, Germany.

出版信息

Int J Cardiovasc Imaging. 2023 Dec;39(12):2507-2516. doi: 10.1007/s10554-023-02960-5. Epub 2023 Oct 23.

Abstract

Machine learning techniques designed to recognize views and perform measurements are increasingly used to address the need for automation of the interpretation of echocardiographic images. The current study was designed to determine whether a recently developed and validated deep learning (DL) algorithm for automated measurements of echocardiographic parameters of left heart chamber size and function can improve the reproducibility and shorten the analysis time, compared to the conventional methodology. The DL algorithm trained to identify standard views and provide automated measurements of 20 standard parameters, was applied to images obtained in 12 randomly selected echocardiographic studies. The resultant measurements were reviewed and revised as necessary by 10 independent expert readers. The same readers also performed conventional manual measurements, which were averaged and used as the reference standard for the DL-assisted approach with and without the manual revisions. Inter-reader variability was quantified using coefficients of variation, which together with analysis times, were compared between the conventional reads and the DL-assisted approach. The fully automated DL measurements showed good agreement with the reference technique: Bland-Altman biases 0-14% of the measured values. Manual revisions resulted in only minor improvement in accuracy: biases 0-11%. This DL-assisted approach resulted in a 43% decrease in analysis time and less inter-reader variability than the conventional methodology: 2-3 times smaller coefficients of variation. In conclusion, DL-assisted approach to analysis of echocardiographic images can provide accurate left heart measurements with the added benefits of improved reproducibility and time savings, compared to conventional methodology.

摘要

机器学习技术旨在识别视图并进行测量,越来越多地被用于满足超声心动图像解释自动化的需求。本研究旨在确定最近开发并验证的用于自动测量左心腔大小和功能超声心动图参数的深度学习(DL)算法是否可以提高重复性并缩短分析时间,与传统方法相比。该 DL 算法经过训练可识别标准视图并提供 20 个标准参数的自动测量,应用于 12 项随机选择的超声心动图研究中获得的图像。由 10 位独立专家读者对得出的测量结果进行审查和必要的修订。这些读者还进行了常规的手动测量,取平均值并用作 DL 辅助方法(有无手动修订)的参考标准。使用变异系数来量化读者间的可变性,然后将其与分析时间一起在常规读数和 DL 辅助方法之间进行比较。全自动 DL 测量值与参考技术具有良好的一致性:Bland-Altman 偏差为测量值的 0-14%。手动修订仅导致准确性略有提高:偏差为 0-11%。与传统方法相比,这种基于 DL 的方法可将分析时间缩短 43%,并且读者间的可变性更小:变异系数小 2-3 倍。总之,与传统方法相比,基于 DL 的超声心动图像分析方法可以提供准确的左心测量值,并具有提高重复性和节省时间的额外优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验