Department of Medicine, University of Chicago Medical Center, 5758 South Maryland Ave, MC 9067 Room 5513, Chicago, IL, USA.
Centro Privado de Cardiologia, Yerba Buena, Virgen de la Merced 550, Tucumán, Argentina.
Eur Heart J Cardiovasc Imaging. 2019 May 1;20(5):541-549. doi: 10.1093/ehjci/jey137.
Studies have demonstrated the ability of a new automated algorithm for volumetric analysis of 3D echocardiographic (3DE) datasets to provide accurate and reproducible measurements of left ventricular and left atrial (LV, LA) volumes at end-systole and end-diastole. Recently, this methodology was expanded using a machine learning (ML) approach to automatically measure chamber volumes throughout the cardiac cycle, resulting in LV and LA volume-time curves. We aimed to validate ejection and filling parameters obtained from these curves by comparing them to independent well-validated reference techniques.
We studied 20 patients referred for cardiac magnetic resonance (CMR) examinations, who underwent 3DE imaging the same day. Volume-time curves were obtained for both LV and LA chambers using the ML algorithm (Philips HeartModel), and independently conventional 3DE volumetric analysis (TomTec), and CMR images (slice-by-slice, frame-by-frame manual tracing). Automatically derived LV and LA volumes and ejection/filling parameters were compared against both reference techniques. Minor manual correction of the automatically detected LV and LA borders was needed in 4/20 and 5/20 cases, respectively. Time required to generate volume-time curves was 35 ± 17 s using ML algorithm, 3.6 ± 0.9 min using conventional 3DE analysis, and 96 ± 14 min using CMR. Volume-time curves obtained by all three techniques were similar in shape and magnitude. In both comparisons, ejection/filling parameters showed no significant inter-technique differences. Bland-Altman analysis confirmed small biases, despite wide limits of agreement.
The automated ML algorithm can quickly measure dynamic LV and LA volumes and accurately analyse ejection/filling parameters. Incorporation of this algorithm into the clinical workflow may increase the utilization of 3DE imaging.
研究表明,一种新的自动算法能够对三维超声心动图(3DE)数据集进行容量分析,从而在收缩末期和舒张末期提供左心室和左心房(LV、LA)容量的准确和可重复的测量值。最近,该方法通过使用机器学习(ML)方法得到了扩展,该方法可以自动测量整个心动周期的腔室容量,从而生成 LV 和 LA 容量时间曲线。我们旨在通过将这些曲线获得的射血和充盈参数与独立的经过良好验证的参考技术进行比较来验证这些参数。
我们研究了 20 名因心脏磁共振(CMR)检查而转介的患者,他们在同一天接受了 3DE 成像。使用 ML 算法(Philips HeartModel)和独立的常规 3DE 容积分析(TomTec)以及 CMR 图像(逐片、逐帧手动跟踪)获得 LV 和 LA 腔室的容量时间曲线。自动衍生的 LV 和 LA 容积和射血/充盈参数与两种参考技术进行了比较。在 4/20 和 5/20 例中,分别需要对自动检测到的 LV 和 LA 边界进行少量手动修正。使用 ML 算法生成容量时间曲线需要 35±17 秒,使用常规 3DE 分析需要 3.6±0.9 分钟,使用 CMR 需要 96±14 分钟。所有三种技术获得的容量时间曲线在形状和幅度上相似。在这两种比较中,射血/充盈参数在技术之间没有显著差异。Bland-Altman 分析证实了存在小偏差,尽管协议范围较宽。
自动 ML 算法可以快速测量动态 LV 和 LA 容量,并准确分析射血/充盈参数。将该算法纳入临床工作流程可能会增加 3DE 成像的利用率。