Suppr超能文献

基于真实世界观测数据源的联邦因果推断:在 SARS-CoV-2 疫苗效力评估中的应用。

Federated causal inference based on real-world observational data sources: application to a SARS-CoV-2 vaccine effectiveness assessment.

机构信息

Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.

IREC - EPID, Université Catholique de Louvain, Brussels, Belgium.

出版信息

BMC Med Res Methodol. 2023 Oct 23;23(1):248. doi: 10.1186/s12874-023-02068-3.

Abstract

INTRODUCTION

Causal inference helps researchers and policy-makers to evaluate public health interventions. When comparing interventions or public health programs by leveraging observational sensitive individual-level data from populations crossing jurisdictional borders, a federated approach (as opposed to a pooling data approach) can be used. Approaching causal inference by re-using routinely collected observational data across different regions in a federated manner, is challenging and guidance is currently lacking. With the aim of filling this gap and allowing a rapid response in the case of a next pandemic, a methodological framework to develop studies attempting causal inference using federated cross-national sensitive observational data, is described and showcased within the European BeYond-COVID project.

METHODS

A framework for approaching federated causal inference by re-using routinely collected observational data across different regions, based on principles of legal, organizational, semantic and technical interoperability, is proposed. The framework includes step-by-step guidance, from defining a research question, to establishing a causal model, identifying and specifying data requirements in a common data model, generating synthetic data, and developing an interoperable and reproducible analytical pipeline for distributed deployment. The conceptual and instrumental phase of the framework was demonstrated and an analytical pipeline implementing federated causal inference was prototyped using open-source software in preparation for the assessment of real-world effectiveness of SARS-CoV-2 primary vaccination in preventing infection in populations spanning different countries, integrating a data quality assessment, imputation of missing values, matching of exposed to unexposed individuals based on confounders identified in the causal model and a survival analysis within the matched population.

RESULTS

The conceptual and instrumental phase of the proposed methodological framework was successfully demonstrated within the BY-COVID project. Different Findable, Accessible, Interoperable and Reusable (FAIR) research objects were produced, such as a study protocol, a data management plan, a common data model, a synthetic dataset and an interoperable analytical pipeline.

CONCLUSIONS

The framework provides a systematic approach to address federated cross-national policy-relevant causal research questions based on sensitive population, health and care data in a privacy-preserving and interoperable way. The methodology and derived research objects can be re-used and contribute to pandemic preparedness.

摘要

简介

因果推断有助于研究人员和政策制定者评估公共卫生干预措施。当利用跨越司法管辖区边界的人群的敏感个体水平观测数据比较干预措施或公共卫生计划时,可以使用联邦方法(而不是汇集数据方法)。以联邦方式重新使用不同地区常规收集的观测数据来进行因果推断的方法具有挑战性,目前缺乏指导。为了填补这一空白,并在下次大流行时能够快速做出反应,在欧洲 Beyond-COVID 项目中,描述并展示了一种使用联邦跨国敏感观测数据进行因果推断的研究的方法学框架。

方法

基于法律、组织、语义和技术互操作性原则,提出了一种通过重新使用不同地区常规收集的观测数据进行联邦因果推断的框架。该框架包括从定义研究问题到建立因果模型,在通用数据模型中确定和指定数据要求,生成合成数据,以及为分布式部署开发可互操作和可重复使用的分析管道的分步指导。该框架的概念和工具阶段在 BY-COVID 项目中得到了演示,并使用开源软件原型化了一个实现联邦因果推断的分析管道,为评估不同国家/地区人群中 SARS-CoV-2 初级疫苗接种预防感染的真实世界效果做准备,该分析管道整合了数据质量评估、缺失值插补、根据因果模型中确定的混杂因素匹配暴露个体和未暴露个体,以及匹配人群中的生存分析。

结果

在 BY-COVID 项目中,成功地演示了所提出的方法学框架的概念和工具阶段。生成了不同的可查找、可访问、可互操作和可重复使用(FAIR)研究对象,例如研究方案、数据管理计划、通用数据模型、合成数据集和可互操作的分析管道。

结论

该框架提供了一种系统的方法,用于以隐私保护和互操作的方式解决基于敏感人群、健康和护理数据的联邦跨国政策相关因果研究问题。该方法和派生的研究对象可以重复使用,并为大流行的准备做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fb/10594731/6f79a723e751/12874_2023_2068_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验