Suppr超能文献

梯度下降法可证地解决非线性断层重建问题。

Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction.

作者信息

Fridovich-Keil Sara, Valdivia Fabrizio, Wetzstein Gordon, Recht Benjamin, Soltanolkotabi Mahdi

机构信息

Stanford University.

University of Nevada, Las Vegas.

出版信息

ArXiv. 2023 Oct 6:arXiv:2310.03956v1.

Abstract

In computed tomography (CT), the forward model consists of a linear Radon transform followed by an exponential nonlinearity based on the attenuation of light according to the Beer-Lambert Law. Conventional reconstruction often involves inverting this nonlinearity as a preprocessing step and then solving a convex inverse problem. However, this nonlinear measurement preprocessing required to use the Radon transform is poorly conditioned in the vicinity of high-density materials, such as metal. This preprocessing makes CT reconstruction methods numerically sensitive and susceptible to artifacts near high-density regions. In this paper, we study a technique where the signal is directly reconstructed from raw measurements through the nonlinear forward model. Though this optimization is nonconvex, we show that gradient descent provably converges to the global optimum at a geometric rate, perfectly reconstructing the underlying signal with a near minimal number of random measurements. We also prove similar results in the under-determined setting where the number of measurements is significantly smaller than the dimension of the signal. This is achieved by enforcing prior structural information about the signal through constraints on the optimization variables. We illustrate the benefits of direct nonlinear CT reconstruction with cone-beam CT experiments on synthetic and real 3D volumes. We show that this approach reduces metal artifacts compared to a commercial reconstruction of a human skull with metal dental crowns.

摘要

在计算机断层扫描(CT)中,正向模型由线性拉东变换和基于比尔-朗伯定律的光衰减的指数非线性组成。传统的重建通常涉及在预处理步骤中对这种非线性进行求逆,然后解决一个凸逆问题。然而,使用拉东变换所需的这种非线性测量预处理在高密度材料(如金属)附近条件不佳。这种预处理使得CT重建方法在数值上敏感,并且在高密度区域附近容易出现伪影。在本文中,我们研究了一种通过非线性正向模型从原始测量直接重建信号的技术。尽管这种优化是非凸的,但我们表明梯度下降以几何速率可证明地收敛到全局最优,用近乎最少数量的随机测量完美地重建潜在信号。我们还在测量数量明显小于信号维度的欠定设置中证明了类似结果。这是通过对优化变量施加关于信号的先验结构信息来实现的。我们通过对合成和真实3D体积进行锥束CT实验来说明直接非线性CT重建的好处。我们表明,与带有金属牙冠的人类头骨的商业重建相比,这种方法减少了金属伪影。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c01a/10593065/9b02219f647e/nihpp-2310.03956v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验