Suppr超能文献

超低剂量CT重建中对数前与对数后统计模型的比较

Comparison Between Pre-Log and Post-Log Statistical Models in Ultra-Low-Dose CT Reconstruction.

作者信息

Alessio Adam M, Kinahan Paul E, Sauer Ken, Kalra Mannudeep K, De Man Bruno

出版信息

IEEE Trans Med Imaging. 2017 Mar;36(3):707-720. doi: 10.1109/TMI.2016.2627004. Epub 2016 Nov 9.

Abstract

X-ray detectors in clinical computed tomography (CT) usually operate in current-integrating mode. Their complicated signal statistics often lead to intractable likelihood functions for practical use in model-based image reconstruction (MBIR). It is therefore desirable to design simplified statistical models without losing the essential factors. Depending on whether the CT transmission data are logarithmically transformed, pre-log and post-log models are two major categories of choices in CT MBIR. Both being approximations, it remains an open question whether one model can notably improve image quality over the other on real scanners. In this study, we develop and compare several pre-log and post-log MBIR algorithms under a unified framework. Their reconstruction accuracy based on simulation and clinical datasets are evaluated. The results show that pre-log MBIR can achieve notably better quantitative accuracy than post-log MBIR in ultra-low-dose CT, although in less extreme cases, post-log MBIR with handcrafted pre-processing remains a competitive alternative. Pre-log MBIR could play a growing role in emerging ultra-low-dose CT applications.

摘要

临床计算机断层扫描(CT)中的X射线探测器通常在电流积分模式下运行。其复杂的信号统计特性常常导致在基于模型的图像重建(MBIR)中实际使用时难以处理的似然函数。因此,需要设计简化的统计模型,同时又不丢失关键因素。根据CT传输数据是否进行对数变换,对数变换前和对数变换后的模型是CT-MBIR中的两大类选择。由于两者都是近似值,在实际扫描仪上,一种模型是否能显著优于另一种模型来提高图像质量仍然是一个悬而未决的问题。在本研究中,我们在统一框架下开发并比较了几种对数变换前和对数变换后的MBIR算法。评估了它们基于模拟和临床数据集的重建精度。结果表明,在超低剂量CT中,对数变换前的MBIR在定量精度上比对数变换后的MBIR显著更好,不过在不太极端的情况下,经过手工预处理的对数变换后的MBIR仍然是一个有竞争力的选择。对数变换前的MBIR在新兴的超低剂量CT应用中可能会发挥越来越重要的作用。

相似文献

引用本文的文献

本文引用的文献

6
Multi-material decomposition using statistical image reconstruction for spectral CT.用于光谱CT的基于统计图像重建的多材料分解
IEEE Trans Med Imaging. 2014 Aug;33(8):1614-26. doi: 10.1109/TMI.2014.2320284. Epub 2014 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验