Suppr超能文献

非线性小波图像处理:变分问题、压缩以及通过小波收缩去除噪声。

Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage.

作者信息

Charnbolle A, DeVore R A, Lee N Y, Lucier B J

机构信息

CEREMADE, Univ. de Paris-Dauphine, France.

出版信息

IEEE Trans Image Process. 1998;7(3):319-35. doi: 10.1109/83.661182.

Abstract

This paper examines the relationship between wavelet-based image processing algorithms and variational problems. Algorithms are derived as exact or approximate minimizers of variational problems; in particular, we show that wavelet shrinkage can be considered the exact minimizer of the following problem. Given an image F defined on a square I, minimize over all g in the Besov space B(1)(1)(L (1)(I)) the functional |F-g|(L2)(I)(2)+lambda|g|(B(1)(1 )(L(1(I)))). We use the theory of nonlinear wavelet image compression in L(2)(I) to derive accurate error bounds for noise removal through wavelet shrinkage applied to images corrupted with i.i.d., mean zero, Gaussian noise. A new signal-to-noise ratio (SNR), which we claim more accurately reflects the visual perception of noise in images, arises in this derivation. We present extensive computations that support the hypothesis that near-optimal shrinkage parameters can be derived if one knows (or can estimate) only two parameters about an image F: the largest alpha for which FinEpsilon(q)(alpha )(L(q)(I)),1/q=alpha/2+1/2, and the norm |F|B(q)(alpha)(L(q)(I)). Both theoretical and experimental results indicate that our choice of shrinkage parameters yields uniformly better results than Donoho and Johnstone's VisuShrink procedure; an example suggests, however, that Donoho and Johnstone's SureShrink method, which uses a different shrinkage parameter for each dyadic level, achieves a lower error than our procedure.

摘要

本文研究了基于小波的图像处理算法与变分问题之间的关系。算法被推导为变分问题的精确或近似极小值解;特别地,我们表明小波收缩可被视为以下问题的精确极小值解。给定在正方形区域(I)上定义的图像(F),在所有属于贝索夫空间(B(1)(1)(L (1)(I)))的(g)上,求泛函(|F - g|(L2)(I)(2) + \lambda|g|(B(1)(1 )(L(1(I))))的极小值。我们利用(L(2)(I))中的非线性小波图像压缩理论,为通过应用于被独立同分布、均值为零的高斯噪声污染的图像的小波收缩去噪推导精确的误差界。在此推导过程中出现了一种新的信噪比(SNR),我们声称它能更准确地反映图像中噪声的视觉感知。我们给出了大量计算结果,支持这样一个假设:如果仅知道(或能估计)关于图像(F)的两个参数,即使得(FinEpsilon(q)(alpha )(L(q)(I)),1/q = alpha/2 + 1/2)的最大(\alpha),以及范数(|F|B(q)(alpha)(L(q)(I))),那么就可以推导出近似最优的收缩参数。理论和实验结果均表明,我们选择的收缩参数比多诺霍和约翰斯通的VisuShrink方法能产生一致更好的结果;然而,一个例子表明,多诺霍和约翰斯通的SureShrink方法,即在每个二进尺度上使用不同的收缩参数,比我们的方法能实现更低的误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验