Suppr超能文献

评估3D打印聚合物的可浸出细胞毒性及简便解毒方法。

Assessing Leachable Cytotoxicity of 3D-Printed Polymers and Facile Detoxification Methods.

作者信息

Rengarajan Venkatakrishnan, Clyde Angela, Pontsler Jefferson, Valiente Jonathan, Peel Adreann, Huang Yu

机构信息

Department of Biological Engineering, Utah State University, Logan, Utah, USA.

Institute of Antiviral Research, Utah State University, Logan, Utah, USA.

出版信息

3D Print Addit Manuf. 2023 Oct;10(5):1110-1121. doi: 10.1089/3dp.2021.0216. Epub 2023 Jan 13.

Abstract

Additive manufacturing of polymers is gaining momentum in health care industries by providing rapid 3D printing of customizable designs. Yet, little is explored about the cytotoxicity of leachable toxins that the 3D printing process introduced into the final product. We studied three printable materials, which have various mechanical properties and are widely used in stereolithography 3D printing. We evaluated the cytotoxicity of these materials through exposing two fibroblast cell lines (human and mouse derived) to the 3D-printed parts, using overlay indirect contact assays. All the 3D-printed parts were measured toxic to the cells in a leachable manner, with flexible materials more toxic than rigid materials. Furthermore, we attempted to reduce the toxicity of the 3D-printed material by employing three treatment methods (further curing, passivation coating, and Soxhlet solvent extraction). The Soxhlet solvent extraction method was the most effective in removing the leachable toxins, resulting in the eradication of the material's toxicity. Passivation coating and further curing showed moderate and little detoxification, respectively. Additionally, mechanical testing of the materials treated with extraction methods revealed no significant impacts on its mechanical performances. As leachable toxins are broadly present in 3D-printed polymers, our cytotoxicity evaluation and reduction methods could aid in extending the selections of biocompatible materials and pave the way for the translational use of 3D printing.

摘要

聚合物的增材制造通过提供可定制设计的快速3D打印,在医疗保健行业正获得越来越多的关注。然而,对于3D打印过程引入最终产品中的可浸出毒素的细胞毒性,人们却知之甚少。我们研究了三种具有不同机械性能且广泛用于立体光刻3D打印的可打印材料。我们通过使用覆盖间接接触试验,将两种成纤维细胞系(人源和鼠源)暴露于3D打印部件,来评估这些材料的细胞毒性。所有3D打印部件均以可浸出的方式对细胞显示出毒性,柔性材料比刚性材料毒性更大。此外,我们尝试采用三种处理方法(进一步固化、钝化涂层和索氏溶剂萃取)来降低3D打印材料的毒性。索氏溶剂萃取法在去除可浸出毒素方面最为有效,可消除材料的毒性。钝化涂层和进一步固化分别显示出中度和轻微的解毒效果。此外,对采用萃取方法处理的材料进行的力学测试表明,其力学性能没有受到显著影响。由于可浸出毒素广泛存在于3D打印的聚合物中,我们的细胞毒性评估和降低方法有助于扩大生物相容性材料的选择范围,并为3D打印的转化应用铺平道路。

相似文献

1
Assessing Leachable Cytotoxicity of 3D-Printed Polymers and Facile Detoxification Methods.
3D Print Addit Manuf. 2023 Oct;10(5):1110-1121. doi: 10.1089/3dp.2021.0216. Epub 2023 Jan 13.
4
Experimental Characterization Framework for SLA Additive Manufacturing Materials.
Polymers (Basel). 2021 Apr 2;13(7):1147. doi: 10.3390/polym13071147.
5
Optimization of photocrosslinkable resin components and 3D printing process parameters.
Acta Biomater. 2019 Oct 1;97:154-161. doi: 10.1016/j.actbio.2019.07.045. Epub 2019 Jul 26.
7
Printable PICN Composite Mechanically Compatible with Human Teeth.
J Dent Res. 2021 Dec;100(13):1475-1481. doi: 10.1177/00220345211012930. Epub 2021 May 12.
8
Light-Based Printing of Leachable Salt Molds for Facile Shaping of Complex Structures.
Adv Mater. 2022 Aug;34(32):e2203878. doi: 10.1002/adma.202203878. Epub 2022 Jul 5.
9
The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications.
Tissue Eng Part B Rev. 2020 Jun;26(3):272-283. doi: 10.1089/ten.TEB.2019.0224.

引用本文的文献

2
Parylene C Coating Efficacy Studies: Enhancing Biocompatibility of 3D Printed Polyurethane Parts for Biopharmaceutical and CGT Applications.
ACS Appl Bio Mater. 2024 Aug 19;7(8):5369-5381. doi: 10.1021/acsabm.4c00561. Epub 2024 Jul 23.
3
Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
Anal Chim Acta. 2022 May 29;1209:339842. doi: 10.1016/j.aca.2022.339842. Epub 2022 Apr 30.

本文引用的文献

1
Effect of post-rinsing time on the mechanical strength and cytotoxicity of a 3D printed orthodontic splint material.
Dent Mater. 2021 May;37(5):e314-e327. doi: 10.1016/j.dental.2021.01.016. Epub 2021 Feb 18.
2
A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays.
Bioact Mater. 2020 Oct 20;6(4):1130-1139. doi: 10.1016/j.bioactmat.2020.10.003. eCollection 2021 Apr.
3
3D-printed Bioreactors for Modeling and Analysis.
Int J Bioprint. 2020 Aug 18;6(4):267. doi: 10.18063/ijb.v6i4.267. eCollection 2020.
4
Fabrication of Tapered 3D Microstructure Arrays Using Dual-Exposure Lithography (DEL).
Micromachines (Basel). 2020 Sep 29;11(10):903. doi: 10.3390/mi11100903.
5
An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging.
Lab Chip. 2020 Nov 7;20(21):3948-3959. doi: 10.1039/d0lc00757a. Epub 2020 Sep 16.
7
3D Printing of Pharmaceuticals and Drug Delivery Devices.
Pharmaceutics. 2020 Mar 15;12(3):266. doi: 10.3390/pharmaceutics12030266.
8
Application of Micro-Scale 3D Printing in Pharmaceutics.
Pharmaceutics. 2019 Aug 3;11(8):390. doi: 10.3390/pharmaceutics11080390.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验