Sun Xingzhi, Xu Charles, Rocha João F, Liu Chen, Hollander-Bodie Benjamin, Goldman Laney, DiStasio Marcello, Perlmutter Michael, Krishnaswamy Smita
Yale University.
Harvey Mudd College.
ArXiv. 2024 Sep 14:arXiv:2409.09469v1.
In many data-driven applications, higher-order relationships among multiple objects are essential in capturing complex interactions. Hypergraphs, which generalize graphs by allowing edges to connect any number of nodes, provide a flexible and powerful framework for modeling such higher-order relationships. In this work, we introduce hypergraph diffusion wavelets and describe their favorable spectral and spatial properties. We demonstrate their utility for biomedical discovery in spatially resolved transcriptomics by applying the method to represent disease-relevant cellular niches for Alzheimer's disease.
在许多数据驱动的应用中,多个对象之间的高阶关系对于捕捉复杂的相互作用至关重要。超图通过允许边连接任意数量的节点来推广图,为建模此类高阶关系提供了一个灵活且强大的框架。在这项工作中,我们引入了超图扩散小波,并描述了它们良好的频谱和空间特性。我们通过将该方法应用于表示阿尔茨海默病与疾病相关的细胞微环境,证明了它们在空间分辨转录组学中的生物医学发现效用。