Moffa Jamie C, Bland India N, Tooley Jessica R, Kalyanaraman Vani, Heitmeier Monique, Creed Meaghan C, Copits Bryan A
Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO.
Washington University Medical Scientist Training Program, Washington University School of Medicine; St. Louis, MO.
bioRxiv. 2023 Oct 10:2023.10.10.561249. doi: 10.1101/2023.10.10.561249.
Gene manipulation strategies using germline knockout, conditional knockout, and more recently CRISPR/Cas9 are crucial tools for advancing our understanding of the nervous system. However, traditional gene knockout approaches can be costly and time consuming, may lack cell-type specificity, and can induce germline recombination. Viral gene editing presents and an exciting alternative to more rapidly study genes of unknown function; however, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we have developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 in specific cell types in transgenic mouse lines affords more space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three commonly used tools in neuroscience: ChRonos, a channelrhodopsin, for manipulating synaptic transmission using optogenetics; GCaMP8f for recording Ca2+ transients using fiber photometry, and mCherry for anatomical tracing of axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens (NAc), glutamatergic neurons projecting from the ventral pallidum (VP) to the lateral habenula (LHb), dopaminergic neurons in the ventral tegmental area (VTA), and parvalbumin (PV)-positive proprioceptive neurons in the periphery. This flexible approach should be useful to identify novel genes that affect synaptic transmission, circuit activity, or morphology with a single viral injection.
使用种系敲除、条件性敲除以及最近的CRISPR/Cas9等基因操作策略是推动我们对神经系统理解的关键工具。然而,传统的基因敲除方法可能成本高昂且耗时,可能缺乏细胞类型特异性,并且会诱导种系重组。病毒基因编辑为更快速地研究未知功能基因提供了一种令人兴奋的替代方法;然而,由于Cas9蛋白体积较大以及腺相关病毒(AAV)的包装能力有限,目前用于操纵或可视化编辑细胞的策略具有挑战性。为了克服这些限制,我们开发了一种替代基因编辑策略,该策略使用单个AAV载体和表达Cre依赖型Cas9的小鼠品系,以在整个神经系统中实现高效的细胞类型特异性编辑。在转基因小鼠品系的特定细胞类型中表达Cre依赖型Cas9,为包装用于基因编辑的引导RNA提供了更多空间,同时还提供了依赖Cre的、可遗传编码的工具,以便使用单一病毒来操纵、绘制或监测神经元。我们使用神经科学中三种常用工具验证了这一策略:ChRonos,一种用于通过光遗传学操纵突触传递的通道视紫红质;GCaMP8f,用于通过光纤光度法记录Ca2+瞬变;以及mCherry,用于轴突投射的解剖学追踪。我们在多个脑区和细胞类型中测试了这些工具,包括伏隔核(NAc)中的GABA能神经元、从腹侧苍白球(VP)投射到外侧缰核(LHb)的谷氨酸能神经元、腹侧被盖区(VTA)中的多巴胺能神经元以及外周的小白蛋白(PV)阳性本体感受神经元。这种灵活的方法对于通过单次病毒注射来鉴定影响突触传递、电路活动或形态的新基因应该是有用的。