IEEE J Biomed Health Inform. 2024 Oct;28(10):5667-5675. doi: 10.1109/JBHI.2023.3327296. Epub 2024 Oct 3.
Stroke is one of the leading causes of death and disability. To address this challenge, microwave imaging has been proposed as a portable medical imaging modality. However, accurate stroke classification using microwave signals is still an open challenge. In addition, identified features of microwave signals used for stroke classification need to be linked back to the original data. This work attempts to address these issues by proposing a wavelet convolutional neural network (CNN), which combines multiresolution analysis and CNN to learn distinctive patterns in the scalogram for accurate classification. A game theoretic approach is used to explain the model and indicate distinctive features for discriminating stroke types. The proposed algorithm is tested in simulation and experiments. Different types of noise and manufacturing tolerances are modeled using data collected from healthy human trials and added to the simulation data to bridge the gap between the simulation and real-life data. The achieved classification accuracy using the proposed method ranges from 81.7% for 3D simulations to 95.7% for lab experiments using simple head phantoms. Obtained explanations using the method indicate the relevance of wavelet coefficients on frequencies 0.95-1.45 GHz and the time slot of 1.3 to 1.7 ns for distinguishing ischemic from hemorrhagic strokes.
中风是导致死亡和残疾的主要原因之一。为了解决这一挑战,微波成像是一种便携式医学成像方式被提出来了。然而,使用微波信号进行准确的中风分类仍然是一个开放性的挑战。此外,用于中风分类的微波信号的已识别特征需要与原始数据联系起来。这项工作试图通过提出一种小波卷积神经网络(CNN)来解决这些问题,该网络将多分辨率分析和 CNN 结合起来,以学习谱图中的独特模式,从而进行准确分类。博弈论方法用于解释模型并指示用于区分中风类型的独特特征。所提出的算法在模拟和实验中进行了测试。使用从健康人体试验中收集的数据对不同类型的噪声和制造容差进行建模,并将其添加到模拟数据中,以弥合模拟数据和实际数据之间的差距。使用所提出的方法获得的分类准确性范围从 3D 模拟的 81.7%到使用简单头部模拟体的实验室实验的 95.7%。使用该方法获得的解释表明,在区分缺血性中风和出血性中风时,频率为 0.95-1.45GHz 的小波系数和时间间隔为 1.3-1.7ns 的相关性。