Shen Tzu-Hsien, Girod Robin, Tileli Vasiliki
Institute of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Acc Chem Res. 2023 Nov 7;56(21):3023-3032. doi: 10.1021/acs.accounts.3c00463. Epub 2023 Oct 24.
ConspectusThe value of operando and in situ characterization methodologies for understanding electrochemical systems under operation can be inferred from the upsurge of studies that have reported mechanistic insights into electrocatalytic processes based on such measurements. Despite the widespread availability of performing dynamic experiments nowadays, these techniques are in their infancy because the complexity of the experimental design and the collection and analysis of data remain challenging, effectively necessitating future developments. It is also due to their extensive use that a dedicated for acquiring dynamic electrocatalytic information is imperative. In this Account, we focus on the work of our laboratory on electrochemical liquid-phase transmission electron microscopy (ec-LPTEM) to understand the transformation/activation of state-of-the-art nanocatalysts for the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and CO electroreduction (COER). We begin by describing the development of electrochemical microcells for TEM studies, highlighting the importance of tailoring the system to each electrochemical process to obtain reliable results. Starting with the anodic OER for alkaline electrolyzers, we demonstrate the capability of real-time monitoring of the electrowetting behavior of Co-based oxide catalysts and detail the fascinating insights gained into solid-liquid interfaces for the reversible surface reconstruction of the catalystic surfaces and their degradation processes. Importantly, in the case of the OER, we report the exceptional capacity of ec-LPTEM to probe gaseous products and therefore resolve solid-liquid-gas phenomena. Moving toward the cathodic ORR for fuel cells, we summarize studies that pertain to the evaluation of the degradation mechanisms of Pt nanoparticles and discuss the issues with performing real-time measurements on realistic catalyst layers that are composed of the carbon support, ionomer network, and Pt nanocatalysts. For the most cathodic COER, we first discuss the challenges of spatiotemporal data collection in microcells under these negative potentials. We then show that control over the electrochemical stimuli is critical for determining the mechanism of restructuring/dissolution of Cu nanospheres, either for focusing on the first stages of the reaction or for start/stop operation studies. Finally, we close this Account with the possible evolution in the way we visualize electrochemical processes with ec-LPTEM and emphasize the need for studies that bridge the scales with the ultimate goal of fully evaluating the impact of the insights obtained from the in situ-monitored processes on the operability of electrocatalytic devices.
概述
通过大量基于此类测量报道了对电催化过程机理见解的研究热潮,可以推断出原位和实时表征方法对于理解运行中的电化学系统的价值。尽管如今进行动态实验已广泛可行,但这些技术仍处于起步阶段,因为实验设计以及数据的收集和分析的复杂性仍然具有挑战性,这实际上需要未来进一步发展。也正是由于它们的广泛应用,迫切需要一个专门用于获取动态电催化信息的方法。在本综述中,我们重点介绍我们实验室在电化学液相透射电子显微镜(ec-LPTEM)方面的工作,以了解用于析氧反应(OER)、氧还原反应(ORR)和CO电还原(COER)的先进纳米催化剂的转变/活化情况。我们首先描述用于TEM研究的电化学微电池的发展,强调针对每个电化学过程定制系统以获得可靠结果的重要性。从碱性电解槽的阳极OER开始,我们展示了实时监测钴基氧化物催化剂电润湿行为的能力,并详细阐述了在固液界面获得的关于催化表面可逆表面重构及其降解过程的迷人见解。重要的是,对于OER,我们报道了ec-LPTEM探测气态产物并因此解析固 - 液 - 气现象的卓越能力。转向燃料电池的阴极ORR,我们总结了与评估Pt纳米颗粒降解机制相关的研究,并讨论了在由碳载体、离聚物网络和Pt纳米催化剂组成的实际催化剂层上进行实时测量时存在的问题。对于最阴极的COER,我们首先讨论在这些负电位下微电池中时空数据收集的挑战。然后我们表明,控制电化学刺激对于确定Cu纳米球的重构/溶解机制至关重要,无论是关注反应的初始阶段还是进行启动/停止操作研究。最后,我们以ec-LPTEM可视化电化学过程方式的可能演变来结束本综述,并强调需要进行跨尺度研究,其最终目标是全面评估从原位监测过程中获得的见解对电催化装置可操作性的影响。