Bianchi Pauline, Monbaliu Jean-Christophe M
Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, B6a, Room 3/19, Allée du Six Août 13, 4000, Liège (SartTilman), Belgium.
WEL Research Institute, Avenue Pasteur 6, 1300, Wavre, Belgium.
Angew Chem Int Ed Engl. 2024 Jan 25;63(5):e202311526. doi: 10.1002/anie.202311526. Epub 2023 Dec 22.
The use of micro/meso-fluidic reactors has resulted in both new scenarios for chemistry and new requirements for chemists. Through flow chemistry, large-scale reactions can be performed in drastically reduced reactor sizes and reaction times. This obvious advantage comes with the concomitant challenge of re-designing long-established batch processes to fit these new conditions. The reliance on experimental trial-and-error to perform this translation frequently makes flow chemistry unaffordable, thwarting initial aspirations to revolutionize chemistry. By combining computational chemistry and machine learning, we have developed a model that provides predictive power tailored specifically to flow reactions. We show its applications to translate batch to flow, to provide mechanistic insight, to contribute reagent descriptors, and to synthesize a library of novel compounds in excellent yields after executing a single set of conditions.
微/介观流体反应器的使用既带来了化学领域的新场景,也对化学家提出了新要求。通过流动化学,可以在大幅减小的反应器尺寸和缩短的反应时间内进行大规模反应。这一明显优势伴随着将长期建立的间歇过程重新设计以适应这些新条件的相应挑战。依靠实验试错来进行这种转换常常使流动化学成本过高,挫败了最初对化学进行变革的期望。通过结合计算化学和机器学习,我们开发了一个模型,该模型提供专门针对流动反应的预测能力。我们展示了它在将间歇反应转换为流动反应、提供机理见解、贡献试剂描述符以及在执行一组条件后以优异产率合成新型化合物库方面的应用。