Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
Pharmacoepidemiol Drug Saf. 2024 Jan;33(1):e5716. doi: 10.1002/pds.5716. Epub 2023 Oct 25.
For observational cohort studies that employ matching by propensity scores (PS), preliminary stratification by consequential predictors of outcome better emulates stratified randomization and potentially reduces variance and bias through relaxed dependence on modeling assumptions. We assessed the impact of pre-stratification in two real-life examples. For both, prior evidence from placebo-controlled randomized clinical trials (RCTs) suggested small or no risk reduction, but observational analysis suggested protection, presumably the result of confounding bias.
The study populations consisted of Medicare beneficiaries (2014-18) with type 2 diabetes initiating either (i) empagliflozin versus dipeptidyl peptidase-4 inhibitors (DPP-4i) or (ii) empagliflozin versus glucagon-like peptide-1 receptor agonists (GLP-1RA). The outcome was myocardial infarction or stroke. We estimated hazard ratios (HR) and rate differences (RD) after controlling for 143 pre-exposure covariates via 1:1 PS matching after (1) PS estimation in the total cohort (total-cohort PS-matching) and (2) PS estimation separately by baseline cardiovascular disease (stratified PS matching).
Stratified PS matching resulted in HRs that exceeded those from total-cohort PS-matching by 13% and 9%, respectively, for the comparisons of empagliflozin to DPP-4i and GLP-1RA. Against both comparators, HRs and RDs after stratified PS matching were closer to the null, with slightly higher variances (2%-3%) than those after total-cohort PS matching.
Stratified PS matching produced effect estimates closer to the expected trial findings than total-cohort PS matching. The price paid in increased variance was minimal.
对于采用倾向评分(PS)进行匹配的观察性队列研究,通过对结果的重要预测因素进行后续分层,更好地模拟分层随机化,并通过放宽对建模假设的依赖,减少方差和偏差。我们在两个实际例子中评估了分层前的影响。对于这两个例子,来自安慰剂对照随机临床试验(RCT)的先前证据表明风险降低较小或没有,但观察性分析表明有保护作用,推测这是混杂偏差的结果。
研究人群由 2014 年至 2018 年期间开始使用恩格列净的 Medicare 受益人组成,包括(i)恩格列净与二肽基肽酶-4 抑制剂(DPP-4i)相比,或(ii)恩格列净与胰高血糖素样肽-1 受体激动剂(GLP-1RA)相比。结局是心肌梗死或中风。我们通过 1:1PS 匹配控制了 143 个暴露前协变量后,估计了风险比(HR)和率差(RD),其中(1)在总队列中进行 PS 估计后(总队列 PS 匹配),以及(2)根据基线心血管疾病进行 PS 估计(分层 PS 匹配)。
分层 PS 匹配的 HR 分别比总队列 PS 匹配的 HR 高出 13%和 9%,用于恩格列净与 DPP-4i 和 GLP-1RA 的比较。与两种比较药物相比,分层 PS 匹配后的 HR 和 RD 更接近零,方差略高(2%-3%),而总队列 PS 匹配后的方差略低。
分层 PS 匹配产生的估计值比总队列 PS 匹配更接近预期的试验结果。方差增加的代价微不足道。