Crop Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
J Exp Bot. 2024 Feb 2;75(3):901-916. doi: 10.1093/jxb/erad416.
Photosynthesis drives plant physiology, biomass accumulation, and yield. Photosynthetic efficiency, specifically the operating efficiency of PSII (Fq'/Fm'), is highly responsive to actual growth conditions, especially to fluctuating photosynthetic photon fluence rate (PPFR). Under field conditions, plants constantly balance energy uptake to optimize growth. The dynamic regulation complicates the quantification of cumulative photochemical energy uptake based on the intercepted solar energy, its transduction into biomass, and the identification of efficient breeding lines. Here, we show significant effects on biomass related to genetic variation in photosynthetic efficiency of 178 climbing bean (Phaseolus vulgaris L.) lines. Under fluctuating conditions, the Fq'/Fm' was monitored throughout the growing period using hand-held and automated chlorophyll fluorescence phenotyping. The seasonal response of Fq'/Fm' to PPFR (ResponseG:PPFR) achieved significant correlations with biomass and yield, ranging from 0.33 to 0.35 and from 0.22 to 0.31 in two glasshouse and three field trials, respectively. Phenomic yield prediction outperformed genomic predictions for new environments in four trials under different growing conditions. Investigating genetic control over photosynthesis, one single nucleotide polymorphism (Chr09_37766289_13052) on chromosome 9 was significantly associated with ResponseG:PPFR in proximity to a candidate gene controlling chloroplast thylakoid formation. In conclusion, photosynthetic screening facilitates and accelerates selection for high yield potential.
光合作用驱动植物生理学、生物量积累和产量。光合作用效率,特别是 PSII 的操作效率 (Fq'/Fm'),对实际生长条件高度敏感,特别是对波动的光合光子通量率 (PPFR)。在田间条件下,植物不断平衡能量吸收以优化生长。这种动态调节使基于截获的太阳能量、将其转化为生物量以及鉴定高效育种系来量化累积光化学能量吸收变得复杂。在这里,我们展示了 178 条攀援豆(Phaseolus vulgaris L.)系光合作用效率的遗传变异与生物量相关的显著影响。在波动条件下,使用手持式和自动化叶绿素荧光表型测定法在整个生长期间监测 Fq'/Fm'。Fq'/Fm'对 PPFR 的季节响应(ResponseG:PPFR)与生物量和产量显著相关,在两个温室和三个田间试验中分别为 0.33 至 0.35 和 0.22 至 0.31。在不同生长条件下的四个试验中,表型产量预测在新环境下优于基因组预测。研究光合作用的遗传控制,在第 9 号染色体上的一个单核苷酸多态性(Chr09_37766289_13052)与靠近控制叶绿体类囊体形成的候选基因的 ResponseG:PPFR 显著相关。总之,光合作用筛选有助于加速高产潜力的选择。