Suppr超能文献

基于结构可切换深度学习模型的实时睡眠阶段预测和在线校准。

Towards Real-Time Sleep Stage Prediction and Online Calibration Based on Architecturally Switchable Deep Learning Models.

出版信息

IEEE J Biomed Health Inform. 2024 Jan;28(1):470-481. doi: 10.1109/JBHI.2023.3327470. Epub 2024 Jan 4.

Abstract

Despite the recent advances in automatic sleep staging, few studies have focused on real-time sleep staging to promote the regulation of sleep or the intervention of sleep disorders. In this paper, a novel network named SwSleepNet, that can handle both precisely offline sleep staging, and online sleep stages prediction and calibration is proposed. For offline analysis, the proposed network coordinates sequence broadening module (SBM), sequential CNN (SCNN), squeeze and excitation (SE) block, and sequence consolidation module (SCM) to balance the operational efficiency of the network and the comprehensive feature extraction. For online analysis, only SCNN and SE are involved in predicting the sleep stage within a short-time segment of the recordings. Once more than two successive segments have disparate predictions, the calibration mechanism will be triggered, and contextual information will be involved. In addition, to investigate the appropriate time of the segment that is suitable to predict a sleep stage, segments with five-second, three-second, and two-second data are analyzed. The performance of SwSleepNet is validated on two publicly available datasets Sleep-EDF Expanded and Montreal Archive of Sleep Studies (MASS), and one clinical dataset Huashan Hospital Fudan University (HSFU), with the offline accuracy of 84.5%, 86.7%, and 81.8%, respectively, which outperforms the state-of-the-art methods. Additionally, for the online sleep staging, the dedicated calibration mechanism allows SwSleepNet to achieve high accuracy over 80% on three datasets with the short-time segments, demonstrating the robustness and stability of SwSleepNet. This study presents a real-time sleep staging architecture, which is expected to pave the way for accurate sleep regulation and intervention.

摘要

尽管自动睡眠分期技术最近取得了进展,但很少有研究关注实时睡眠分期,以促进睡眠调节或干预睡眠障碍。在本文中,提出了一种名为 SwSleepNet 的新型网络,该网络可以精确地处理离线睡眠分期以及在线睡眠分期预测和校准。对于离线分析,所提出的网络协调序列扩展模块 (SBM)、序列卷积神经网络 (SCNN)、挤压和激励 (SE) 块以及序列整合模块 (SCM) 来平衡网络的运行效率和全面的特征提取。对于在线分析,仅 SCNN 和 SE 用于预测记录中短时间段内的睡眠阶段。一旦超过两个连续的时间段有不同的预测,校准机制将被触发,并涉及上下文信息。此外,为了研究适合预测睡眠阶段的时间段的适当时间,分析了五秒、三秒和两秒数据的段。SwSleepNet 的性能在两个公开可用的数据集 Sleep-EDF Expanded 和 Montreal Archive of Sleep Studies (MASS) 以及一个临床数据集 Huashan Hospital Fudan University (HSFU) 上进行了验证,离线准确率分别为 84.5%、86.7%和 81.8%,优于最先进的方法。此外,对于在线睡眠分期,专用校准机制允许 SwSleepNet 在三个数据集上使用短时间段实现 80%以上的高精度,证明了 SwSleepNet 的鲁棒性和稳定性。本研究提出了一种实时睡眠分期架构,有望为精确的睡眠调节和干预铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验