Suppr超能文献

MaskSleepNet:一种用于睡眠分期中异构信号处理的跨模态自适应神经网络。

MaskSleepNet: A Cross-Modality Adaptation Neural Network for Heterogeneous Signals Processing in Sleep Staging.

出版信息

IEEE J Biomed Health Inform. 2023 May;27(5):2353-2364. doi: 10.1109/JBHI.2023.3253728. Epub 2023 May 4.

Abstract

Deep learning methods have become an important tool for automatic sleep staging in recent years. However, most of the existing deep learning-based approaches are sharply constrained by the input modalities, where any insertion, substitution, and deletion of input modalities would directly lead to the unusable of the model or a deterioration in the performance. To solve the modality heterogeneity problems, a novel network architecture named MaskSleepNet is proposed. It consists of a masking module, a multi-scale convolutional neural network (MSCNN), a squeezing and excitation (SE) block, and a multi-headed attention (MHA) module. The masking module consists of a modality adaptation paradigm that can cooperate with modality discrepancy. The MSCNN extracts features from multiple scales and specially designs the size of the feature concatenation layer to prevent invalid or redundant features from zero-setting channels. The SE block further optimizes the weights of the features to optimize the network learning efficiency. The MHA module outputs the prediction results by learning the temporal information between the sleeping features. The performance of the proposed model was validated on two publicly available datasets, Sleep-EDF Expanded (Sleep-EDFX) and Montreal Archive of Sleep Studies (MASS), and a clinical dataset, Huashan Hospital Fudan University (HSFU). The proposed MaskSleepNet can achieve favorable performance with input modality discrepancy, e.g. for single-channel EEG signal, it can reach 83.8%, 83.4%, 80.5%, for two-channel EEG+EOG signals it can reach 85.0%, 84.9%, 81.9% and for three-channel EEG+EOG+EMG signals, it can reach 85.7%, 87.5%, 81.1% on Sleep-EDFX, MASS, and HSFU, respectively. In contrast the accuracy of the state-of-the-art approach which fluctuated widely between 69.0% and 89.4%. The experimental results exhibit that the proposed model can maintain superior performance and robustness in handling input modality discrepancy issues.

摘要

深度学习方法近年来已成为自动睡眠分期的重要工具。然而,现有的大多数基于深度学习的方法都受到输入模态的严格限制,其中任何输入模态的插入、替换和删除都会直接导致模型无法使用或性能下降。为了解决模态异质性问题,提出了一种名为 MaskSleepNet 的新网络架构。它由一个掩蔽模块、一个多尺度卷积神经网络(MSCNN)、一个挤压激励(SE)块和一个多头注意力(MHA)模块组成。掩蔽模块由一个可以与模态差异合作的模态自适应范式组成。MSCNN 从多个尺度提取特征,并专门设计特征连接层的大小,以防止无效或冗余特征将通道置零。SE 块进一步优化特征的权重,以优化网络学习效率。MHA 模块通过学习睡眠特征之间的时间信息来输出预测结果。所提出的模型在两个公开可用的数据集(Sleep-EDF Expanded(Sleep-EDFX)和 Montreal Archive of Sleep Studies(MASS))和一个临床数据集(Huashan Hospital Fudan University(HSFU))上进行了验证。所提出的 MaskSleepNet 可以在存在输入模态差异的情况下实现良好的性能,例如,对于单通道 EEG 信号,它可以达到 83.8%、83.4%、80.5%,对于双通道 EEG+EOG 信号,它可以达到 85.0%、84.9%、81.9%,对于三通道 EEG+EOG+EMG 信号,它可以达到 85.7%、87.5%、81.1%,分别在 Sleep-EDFX、MASS 和 HSFU 上。相比之下,最先进方法的准确性在 69.0%到 89.4%之间波动很大。实验结果表明,所提出的模型在处理输入模态差异问题时可以保持优越的性能和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验