Suppr超能文献

忆阻离子动力学实现生物逼真计算。

Memristive Ion Dynamics to Enable Biorealistic Computing.

作者信息

Zhao Ruoyu, Kim Seung Ju, Xu Yichun, Zhao Jian, Wang Tong, Midya Rivu, Ganguli Sabyasachi, Roy Ajit K, Dubey Madan, Williams R Stanley, Yang J Joshua

机构信息

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States.

Sandia National Laboratories, Livermore, California 94550, United States.

出版信息

Chem Rev. 2025 Jan 22;125(2):745-785. doi: 10.1021/acs.chemrev.4c00587. Epub 2024 Dec 27.

Abstract

Conventional artificial intelligence (AI) systems are facing bottlenecks due to the fundamental mismatches between AI models, which rely on parallel, in-memory, and dynamic computation, and traditional transistors, which have been designed and optimized for sequential logic operations. This calls for the development of novel computing units beyond transistors. Inspired by the high efficiency and adaptability of biological neural networks, computing systems mimicking the capabilities of biological structures are gaining more attention. Ion-based memristive devices (IMDs), owing to the intrinsic functional similarities to their biological counterparts, hold significant promise for implementing emerging neuromorphic learning and computing algorithms. In this article, we review the fundamental mechanisms of IMDs based on ion drift and diffusion to elucidate the origins of their diverse dynamics. We then examine how these mechanisms operate within different materials to enable IMDs with various types of switching behaviors, leading to a wide range of applications, from emulating biological components to realizing specialized computing requirements. Furthermore, we explore the potential for IMDs to be modified and tuned to achieve customized dynamics, which positions them as one of the most promising hardware candidates for executing bioinspired algorithms with unique specifications. Finally, we identify the challenges currently facing IMDs that hinder their widespread usage and highlight emerging research directions that could significantly benefit from incorporating IMDs.

摘要

传统人工智能(AI)系统正面临瓶颈,这是因为依赖并行、内存和动态计算的AI模型与为顺序逻辑操作而设计和优化的传统晶体管之间存在根本不匹配。这就需要开发超越晶体管的新型计算单元。受生物神经网络的高效性和适应性启发,模仿生物结构能力的计算系统正受到越来越多的关注。基于离子的忆阻器件(IMD),由于其与生物对应物在功能上的内在相似性,在实现新兴的神经形态学习和计算算法方面具有巨大潜力。在本文中,我们回顾了基于离子漂移和扩散的IMD的基本机制,以阐明其多样动力学的起源。然后,我们研究这些机制如何在不同材料中运行,以使IMD具有各种类型的开关行为,从而带来广泛的应用,从模拟生物组件到实现特定的计算需求。此外,我们探索了对IMD进行修改和调整以实现定制动力学的潜力,这使它们成为执行具有独特规格的受生物启发算法的最有前途的硬件候选者之一。最后,我们确定了目前阻碍IMD广泛应用的挑战,并强调了可能从纳入IMD中显著受益的新兴研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e95/11759055/a6576f3b775c/cr4c00587_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验